std::adjacent_difference

From cppreference.com
< cpplrm; | algorithm
Algorithm library
Execution policies (C++17)
Non-modifying sequence operations
(C++11)(C++11)(C++11)
(C++17)
Modifying sequence operations
Operations on uninitialized storage
Partitioning operations
Sorting operations
(C++11)
Binary search operations
Set operations (on sorted ranges)
Heap operations
(C++11)
Minimum/maximum operations
(C++11)
(C++17)
Permutations
Numeric operations
(C++11)
adjacent_difference
C library
Defined in header <numeric>
(1)
template< class InputIt, class OutputIt >

OutputIt adjacent_difference( InputIt first, InputIt last,

OutputIt d_first );
(until C++20)
template< class InputIt, class OutputIt >

constexpr OutputIt adjacent_difference( InputIt first, InputIt last,

OutputIt d_first );
(since C++20)
template< class ExecutionPolicy, class ForwardIt1, class ForwardIt2 >

ForwardIt2 adjacent_difference( ExecutionPolicy&& policy, ForwardIt1 first, ForwardIt1 last,

ForwardIt2 d_first );
(2) (since C++17)
(3)
template< class InputIt, class OutputIt, class BinaryOperation >

OutputIt adjacent_difference( InputIt first, InputIt last,

OutputIt d_first, BinaryOperation op );
(until C++20)
template< class InputIt, class OutputIt, class BinaryOperation >

constexpr OutputIt adjacent_difference( InputIt first, InputIt last,

OutputIt d_first, BinaryOperation op );
(since C++20)
template< class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation >

ForwardIt2 adjacent_difference( ExecutionPolicy&& policy, ForwardIt1 first, ForwardIt1 last,

ForwardIt2 d_first, BinaryOperation op );
(4) (since C++17)

Computes the differences between the second and the first of each adjacent pair of elements of the range [first, last) and writes them to the range beginning at d_first + 1. An unmodified copy of *first is written to *d_first.

1,3) First, creates an accumulator acc whose type is InputIt's value type, initializes it with *first, and assigns the result to *d_first. Then, for every iterator i in [first + 1, last) in order, creates an object val whose type is InputIt's value type, initializes it with *i, computes val - acc (until C++20)val - std::move(acc) (since C++20) (overload (1)) or op(val, acc) (until C++20)op(val, std::move(acc)) (since C++20) (overload (3)), assigns the result to *(d_first + (i - first)), and move assigns from val to acc.
first may be equal to d_first.
2,4) Performs *d_first = *first;. For every d in [1, last - first - 1], assigns *(first + d) - *(first + d - 1) (overload (2)) or op(*(first + d), *(first + d - 1)) (overload (4)) to *(d_first + d). This is executed according to policy. This overload only participates in overload resolution if std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true.
The behavior is undefined if the input and output ranges overlap in any way.


Equivalent operation:

*(d_first)   = *first;
*(d_first+1) = *(first+1) - *(first);
*(d_first+2) = *(first+2) - *(first+1);
*(d_first+3) = *(first+3) - *(first+2);
...

op must not have side effects.

(until C++11)

op must not invalidate any iterators, including the end iterators, or modify any elements of the ranges involved.

(since C++11)

Parameters

first, last - the range of elements
d_first - the beginning of the destination range
policy - the execution policy to use. See execution policy for details.
op - binary operation function object that will be applied.

The signature of the function should be equivalent to the following:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const &.
The types Type1 and Type2 must be such that an object of type iterator_traits<InputIt>::value_type can be implicitly converted to both of them. The type Ret must be such that an object of type OutputIt can be dereferenced and assigned a value of type Ret.

Type requirements
-
InputIt must meet the requirements of InputIterator. InputIt's value type must be MoveAssignable and constructible from the type of *first
-
OutputIt must meet the requirements of OutputIterator. both acc (the accumulated value) and the result of val - acc or op(val, acc) (until C++20)val - std::move(acc) or op(val, std::move(acc)) (since C++20) must be writable to OutputIt
-
ForwardIt1, ForwardIt2 must meet the requirements of ForwardIterator. The results of *first, *first - *first (for (2)) and op(*first, *first) (for (4)) must be writable to ForwardIt2.

Return value

Iterator to the element past the last element written.

Notes

If first == last, this function has no effect and will merely return d_first.

Complexity

Exactly (last - first) - 1 applications of the binary operation

Exceptions

The overloads with a template parameter named ExecutionPolicy report errors as follows:

  • If execution of a function invoked as part of the algorithm throws an exception and ExecutionPolicy is one of the three standard policies, std::terminate is called. For any other ExecutionPolicy, the behavior is implementation-defined.
  • If the algorithm fails to allocate memory, std::bad_alloc is thrown.

Possible implementation

First version
template<class InputIt, class OutputIt>
OutputIt adjacent_difference(InputIt first, InputIt last, 
                             OutputIt d_first)
{
    if (first == last) return d_first;

    typedef typename std::iterator_traits<InputIt>::value_type value_t;
    value_t acc = *first;
    *d_first = acc;
    while (++first != last) {
        value_t val = *first;
        *++d_first = val - std::move(acc); // std::move since C++20
        acc = std::move(val);
    }
    return ++d_first;
}
Second version
template<class InputIt, class OutputIt, class BinaryOperation>
OutputIt adjacent_difference(InputIt first, InputIt last, 
                             OutputIt d_first, BinaryOperation op)
{
    if (first == last) return d_first;

    typedef typename std::iterator_traits<InputIt>::value_type value_t;
    value_t acc = *first;
    *d_first = acc;
    while (++first != last) {
        value_t val = *first;
        *++d_first = op(val, std::move(acc)); // std::move since C++20
        acc = std::move(val);
    }
    return ++d_first;
}

Example

#include <numeric>
#include <vector>
#include <array>
#include <iostream>
#include <functional>
#include <iterator>

int main()
{
    // Default implementation - the difference b/w two adjacent items

    std::vector v {2, 4, 6, 8, 10, 12, 14, 16, 18, 20};
    std::adjacent_difference(v.begin(), v.end(), v.begin());

    for (auto n : v)
        std::cout << n << ' ';

    std::cout << '\n';

    // Fibonacci 

    std::array<int, 10> a {1};

    adjacent_difference(begin(a), std::prev(end(a)), std::next(begin(a)), std::plus<> {});

    copy(begin(a), end(a), std::ostream_iterator<int> {std::cout, " "});
}

Output:

2 2 2 2 2 2 2 2 2 2
1 1 2 3 5 8 13 21 34 55

See also

computes the partial sum of a range of elements
(function template)
sums up a range of elements
(function template)