Standard library header <memory>
From cppreference.com
This header is part of the dynamic memory management library.
Smart pointers categories | |
(C++11) |
smart pointer with unique object ownership semantics (class template) |
(C++11) |
smart pointer with shared object ownership semantics (class template) |
(C++11) |
weak reference to an object managed by std::shared_ptr (class template) |
(removed in C++17) |
smart pointer with strict object ownership semantics (class template) |
Helper classes | |
(C++11) |
provides mixed-type owner-based ordering of shared and weak pointers (class template) |
(C++11) |
allows an object to create a shared_ptr referring to itself (class template) |
(C++11) |
exception thrown when accessing a weak_ptr which refers to already destroyed object (class) |
(C++11) |
default deleter for unique_ptr (class template) |
Allocators | |
the default allocator (class template) | |
(C++11) |
provides information about allocator types (class template) |
(C++11) |
tag type used to select allocator-aware constructor overloads (class) |
(C++11) |
an object of type std::allocator_arg_t used to select allocator-aware constructors (constant) |
(C++11) |
checks if the specified type supports uses-allocator construction (class template) |
Uninitialized storage | |
copies a range of objects to an uninitialized area of memory (function template) | |
(C++11) |
copies a number of objects to an uninitialized area of memory (function template) |
copies an object to an uninitialized area of memory, defined by a range (function template) | |
copies an object to an uninitialized area of memory, defined by a start and a count (function template) | |
(C++17) |
moves a range of objects to an uninitialized area of memory (function template) |
(C++17) |
moves a number of objects to an uninitialized area of memory (function template) |
constructs objects by default-initialization in an uninitialized area of memory, defined by a range (function template) | |
constructs objects by default-initialization in an uninitialized area of memory, defined by a start and a count (function template) | |
constructs objects by value-initialization in an uninitialized area of memory, defined by a range (function template) | |
constructs objects by value-initialization in an uninitialized area of memory, defined by a start and a count (function template) | |
(C++17) |
destroys an object at a given address (function template) |
(C++17) |
destroys a range of objects (function template) |
(C++17) |
destroys a number of objects in a range (function template) |
(deprecated in C++17)(removed in C++20) |
an iterator that allows standard algorithms to store results in uninitialized memory (class template) |
(deprecated in C++17)(removed in C++20) |
obtains uninitialized storage (function template) |
(deprecated in C++17)(removed in C++20) |
frees uninitialized storage (function template) |
Garbage collector support | |
(C++11) |
declares that an object can not be recycled (function) |
(C++11) |
declares that an object can be recycled (function template) |
(C++11) |
declares that a memory area does not contain traceable pointers (function) |
(C++11) |
cancels the effect of std::declare_no_pointers (function) |
(C++11) |
lists pointer safety models (enum) |
(C++11) |
returns the current pointer safety model (function) |
Miscellaneous | |
(C++11) |
provides information about pointer-like types (class template) |
(C++20) |
obtains a raw pointer from a pointer-like type (function template) |
(C++11) |
obtains actual address of an object, even if the & operator is overloaded (function template) |
(C++11) |
aligns a pointer in a buffer (function) |
Smart pointer non-member operations | |
(C++14) |
creates a unique pointer that manages a new object (function template) |
compares to another unique_ptr or with nullptr (function template) | |
creates a shared pointer that manages a new object (function template) | |
creates a shared pointer that manages a new object allocated using an allocator (function template) | |
applies static_cast, dynamic_cast, const_cast, or reinterpret_cast to the stored pointer (function template) | |
returns the deleter of specified type, if owned (function template) | |
compares with another shared_ptr or with nullptr (function template) | |
outputs the value of the stored pointer to an output stream (function template) | |
specializes atomic operations for std::shared_ptr (function template) | |
(C++11) |
specializes the std::swap algorithm (function template) |
(C++11) |
specializes the std::swap algorithm (function template) |
(C++11) |
specializes the std::swap algorithm (function template) |
Smart pointer helper classes | |
(C++11) |
hash support for std::unique_ptr (class template specialization) |
(C++11) |
hash support for std::shared_ptr (class template specialization) |
Synopsis
namespace std { // pointer traits template <class Ptr> struct pointer_traits; template <class T> struct pointer_traits<T*>; // pointer safety enum class pointer_safety { relaxed, preferred, strict }; void declare_reachable(void* p); template <class T> T* undeclare_reachable(T* p); void declare_no_pointers(char* p, size_t n); void undeclare_no_pointers(char* p, size_t n); pointer_safety get_pointer_safety() noexcept; // pointer alignment function void* align(size_t alignment, size_t size, void*& ptr, size_t& space); // allocator argument tag struct allocator_arg_t { explicit allocator_arg_t() = default; }; constexpr allocator_arg_t allocator_arg{}; // uses_allocator template <class T, class Alloc> struct uses_allocator; // allocator traits template <class Alloc> struct allocator_traits; // the default allocator template <class T> class allocator; template <class T, class U> bool operator==(const allocator<T>&, const allocator<U>&) noexcept; template <class T, class U> bool operator!=(const allocator<T>&, const allocator<U>&) noexcept; // specialized algorithms template <class T> constexpr T* addressof(T& r) noexcept; template <class T> const T* addressof(const T&&) = delete; template <class ForwardIterator> void uninitialized_default_construct(ForwardIterator first, ForwardIterator last); template <class ExecutionPolicy, class ForwardIterator> void uninitialized_default_construct(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last); template <class ForwardIterator, class Size> ForwardIterator uninitialized_default_construct_n(ForwardIterator first, Size n); template <class ExecutionPolicy, class ForwardIterator, class Size> ForwardIterator uninitialized_default_construct_n(ExecutionPolicy&& exec, ForwardIterator first, Size n); template <class ForwardIterator> void uninitialized_value_construct(ForwardIterator first, ForwardIterator last); template <class ExecutionPolicy, class ForwardIterator> void uninitialized_value_construct(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last); template <class ForwardIterator, class Size> ForwardIterator uninitialized_value_construct_n(ForwardIterator first, Size n); template <class ExecutionPolicy, class ForwardIterator, class Size> ForwardIterator uninitialized_value_construct_n(ExecutionPolicy&& exec, ForwardIterator first, Size n); template <class InputIterator, class ForwardIterator> ForwardIterator uninitialized_copy(InputIterator first, InputIterator last, ForwardIterator result); template <class ExecutionPolicy, class InputIterator, class ForwardIterator> ForwardIterator uninitialized_copy(ExecutionPolicy&& exec, InputIterator first, InputIterator last, ForwardIterator result); template <class InputIterator, class Size, class ForwardIterator> ForwardIterator uninitialized_copy_n(InputIterator first, Size n, ForwardIterator result); template <class ExecutionPolicy, class InputIterator, class Size, class ForwardIterator> ForwardIterator uninitialized_copy_n(ExecutionPolicy&& exec, InputIterator first, Size n, ForwardIterator result); template <class InputIterator, class ForwardIterator> ForwardIterator uninitialized_move(InputIterator first, InputIterator last, ForwardIterator result); template <class ExecutionPolicy, class InputIterator, class ForwardIterator> ForwardIterator uninitialized_move(ExecutionPolicy&& exec, InputIterator first, InputIterator last, ForwardIterator result); template <class InputIterator, class Size, class ForwardIterator> pair<InputIterator, ForwardIterator> uninitialized_move_n(InputIterator first, Size n, ForwardIterator result); template <class ExecutionPolicy, class InputIterator, class Size, class ForwardIterator> pair<InputIterator, ForwardIterator> uninitialized_move_n(ExecutionPolicy&& exec, InputIterator first, Size n, ForwardIterator result); template <class ForwardIterator, class T> void uninitialized_fill(ForwardIterator first, ForwardIterator last, const T& x); template <class ExecutionPolicy, class ForwardIterator, class T> void uninitialized_fill(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, const T& x); template <class ForwardIterator, class Size, class T> ForwardIterator uninitialized_fill_n(ForwardIterator first, Size n, const T& x); template <class ExecutionPolicy, class ForwardIterator, class Size, class T> ForwardIterator uninitialized_fill_n(ExecutionPolicy&& exec, ForwardIterator first, Size n, const T& x); template <class T> void destroy_at(T* location); template <class ForwardIterator> void destroy(ForwardIterator first, ForwardIterator last); template <class ExecutionPolicy, class ForwardIterator> void destroy(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last); template <class ForwardIterator, class Size> ForwardIterator destroy_n(ForwardIterator first, Size n); template <class ExecutionPolicy, class ForwardIterator, class Size> ForwardIterator destroy_n(ExecutionPolicy&& exec, ForwardIterator first, Size n); // class template unique_ptr template <class T> struct default_delete; template <class T> struct default_delete<T[]>; template <class T, class D = default_delete<T>> class unique_ptr; template <class T, class D> class unique_ptr<T[], D>; template <class T, class... Args> unique_ptr<T> make_unique(Args&&... args); template <class T> unique_ptr<T> make_unique(size_t n); template <class T, class... Args> /*unspecified*/ make_unique(Args&&...) = delete; template <class T, class D> void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept; template <class T1, class D1, class T2, class D2> bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T, class D> bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept; template <class T, class D> bool operator==(nullptr_t, const unique_ptr<T, D>& y) noexcept; template <class T, class D> bool operator!=(const unique_ptr<T, D>& x, nullptr_t) noexcept; template <class T, class D> bool operator!=(nullptr_t, const unique_ptr<T, D>& y) noexcept; template <class T, class D> bool operator<(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator<(nullptr_t, const unique_ptr<T, D>& y); template <class T, class D> bool operator<=(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator<=(nullptr_t, const unique_ptr<T, D>& y); template <class T, class D> bool operator>(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator>(nullptr_t, const unique_ptr<T, D>& y); template <class T, class D> bool operator>=(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator>=(nullptr_t, const unique_ptr<T, D>& y); // class bad_weak_ptr class bad_weak_ptr; // class template shared_ptr template<class T> class shared_ptr; // shared_ptr creation template<class T, class... Args> shared_ptr<T> make_shared(Args&&... args); template<class T, class A, class... Args> shared_ptr<T> allocate_shared(const A& a, Args&&... args); // shared_ptr comparisons template<class T, class U> bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator!=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator<(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator<=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator>=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template <class T> bool operator==(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator==(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator!=(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator!=(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator<(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator<(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator<=(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator<=(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator>(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator>(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator>=(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator>=(nullptr_t, const shared_ptr<T>& y) noexcept; // shared_ptr specialized algorithms template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept; // shared_ptr casts template<class T, class U> shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r) noexcept; // shared_ptr get_deleter template<class D, class T> D* get_deleter(const shared_ptr<T>& p) noexcept; // shared_ptr I/O template<class E, class T, class Y> basic_ostream<E, T>& operator<< (basic_ostream<E, T>& os, const shared_ptr<Y>& p); // class template weak_ptr template<class T> class weak_ptr; // weak_ptr specialized algorithms template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept; // class template owner_less template<class T = void> struct owner_less; // class template enable_shared_from_this template<class T> class enable_shared_from_this; // shared_ptr atomic access template<class T> bool atomic_is_lock_free(const shared_ptr<T>* p); template<class T> shared_ptr<T> atomic_load(const shared_ptr<T>* p); template<class T> shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo); template<class T> void atomic_store(shared_ptr<T>* p, shared_ptr<T> r); template<class T> void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo); template<class T> shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r); template<class T> shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo); template<class T> bool atomic_compare_exchange_weak(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w); template<class T> bool atomic_compare_exchange_strong(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w); template<class T> bool atomic_compare_exchange_weak_explicit(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w, memory_order success, memory_order failure); template<class T> bool atomic_compare_exchange_strong_explicit(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w, memory_order success, memory_order failure); // hash support template <class T> struct hash; template <class T, class D> struct hash<unique_ptr<T, D>>; template <class T> struct hash<shared_ptr<T>>; // uses_allocator template <class T, class Alloc> constexpr bool uses_allocator_v = uses_allocator<T, Alloc>::value; }
Class template std::pointer_traits
namespace std { template <class Ptr> struct pointer_traits { using pointer = Ptr; using element_type = /*see definition*/ ; using difference_type = /*see definition*/ ; template <class U> using rebind = /*see definition*/ ; static pointer pointer_to(/*see definition*/ r); }; template <class T> struct pointer_traits<T*> { using pointer = T*; using element_type = T; using difference_type = ptrdiff_t; template <class U> using rebind = U*; static pointer pointer_to(/*see definition*/ r) noexcept; }; }
Class template std::allocator_traits
namespace std { template <class Alloc> struct allocator_traits { using allocator_type = Alloc; using value_type = typename Alloc::value_type; using pointer = /*see definition*/ ; using const_pointer = /*see definition*/ ; using void_pointer = /*see definition*/ ; using const_void_pointer = /*see definition*/ ; using difference_type = /*see definition*/ ; using size_type = /*see definition*/ ; using propagate_on_container_copy_assignment = /*see definition*/ ; using propagate_on_container_move_assignment = /*see definition*/ ; using propagate_on_container_swap = /*see definition*/ ; using is_always_equal = /*see definition*/ ; template <class T> using rebind_alloc = /*see definition*/ ; template <class T> using rebind_traits = allocator_traits<rebind_alloc<T>>; static pointer allocate(Alloc& a, size_type n); static pointer allocate(Alloc& a, size_type n, const_void_pointer hint); static void deallocate(Alloc& a, pointer p, size_type n); template <class T, class... Args> static void construct(Alloc& a, T* p, Args&&... args); template <class T> static void destroy(Alloc& a, T* p); static size_type max_size(const Alloc& a) noexcept; static Alloc select_on_container_copy_construction(const Alloc& rhs); }; }
Class template std::allocator
namespace std { template <class T> class allocator { public: using value_type = T; using propagate_on_container_move_assignment = true_type; using is_always_equal = true_type; allocator() noexcept; allocator(const allocator&) noexcept; template <class U> allocator(const allocator<U>&) noexcept; ~allocator(); T* allocate(size_t n); void deallocate(T* p, size_t n); }; }
Class template std::default_delete
namespace std { template <class T> struct default_delete { constexpr default_delete() noexcept = default; template <class U> default_delete(const default_delete<U>&) noexcept; void operator()(T*) const; }; template <class T> struct default_delete<T[]> { constexpr default_delete() noexcept = default; template <class U> default_delete(const default_delete<U[]>&) noexcept; template <class U> void operator()(U* ptr) const; }; }
Class template std::unique_ptr
namespace std { template <class T, class D = default_delete<T>> class unique_ptr { public: using pointer = /*see definition*/ ; using element_type = T; using deleter_type = D; // constructors constexpr unique_ptr() noexcept; explicit unique_ptr(pointer p) noexcept; unique_ptr(pointer p, /*see definition*/ d1) noexcept; unique_ptr(pointer p, /*see definition*/ d2) noexcept; unique_ptr(unique_ptr&& u) noexcept; constexpr unique_ptr(nullptr_t) noexcept : unique_ptr() { } template <class U, class E> unique_ptr(unique_ptr<U, E>&& u) noexcept; // destructor ~unique_ptr(); // assignment unique_ptr& operator=(unique_ptr&& u) noexcept; template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept; unique_ptr& operator=(nullptr_t) noexcept; // observers add_lvalue_reference_t<T> operator*() const; pointer operator->() const noexcept; pointer get() const noexcept; deleter_type& get_deleter() noexcept; const deleter_type& get_deleter() const noexcept; explicit operator bool() const noexcept; // modifiers pointer release() noexcept; void reset(pointer p = pointer()) noexcept; void swap(unique_ptr& u) noexcept; // disable copy from lvalue unique_ptr(const unique_ptr&) = delete; unique_ptr& operator=(const unique_ptr&) = delete; }; template <class T, class D> class unique_ptr<T[], D> { public: using pointer = /*see definition*/ ; using element_type = T; using deleter_type = D; // constructors constexpr unique_ptr() noexcept; template <class U> explicit unique_ptr(U p) noexcept; template <class U> unique_ptr(U p, /*see definition*/d) noexcept; template <class U> unique_ptr(U p, /*see definition*/d) noexcept; unique_ptr(unique_ptr&& u) noexcept; template <class U, class E> unique_ptr(unique_ptr<U, E>&& u) noexcept; constexpr unique_ptr(nullptr_t) noexcept : unique_ptr() { } // destructor ~unique_ptr(); // assignment unique_ptr& operator=(unique_ptr&& u) noexcept; template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept; unique_ptr& operator=(nullptr_t) noexcept; // observers T& operator[](size_t i) const; pointer get() const noexcept; deleter_type& get_deleter() noexcept; const deleter_type& get_deleter() const noexcept; explicit operator bool() const noexcept; // modifiers pointer release() noexcept; template <class U> void reset(U p) noexcept; void reset(nullptr_t = nullptr) noexcept; void swap(unique_ptr& u) noexcept; // disable copy from lvalue unique_ptr(const unique_ptr&) = delete; unique_ptr& operator=(const unique_ptr&) = delete; }; }
Class std::bad_weak_ptr
namespace std { class bad_weak_ptr : public exception { public: bad_weak_ptr() noexcept; }; }
namespace std { template<class T> class shared_ptr { public: using element_type = remove_extent_t<T>; using weak_type = weak_ptr<T>; // constructors constexpr shared_ptr() noexcept; template<class Y> explicit shared_ptr(Y* p); template<class Y, class D> shared_ptr(Y* p, D d); template<class Y, class D, class A> shared_ptr(Y* p, D d, A a); template <class D> shared_ptr(nullptr_t p, D d); template <class D, class A> shared_ptr(nullptr_t p, D d, A a); template<class Y> shared_ptr(const shared_ptr<Y>& r, element_type* p) noexcept; shared_ptr(const shared_ptr& r) noexcept; template<class Y> shared_ptr(const shared_ptr<Y>& r) noexcept; shared_ptr(shared_ptr&& r) noexcept; template<class Y> shared_ptr(shared_ptr<Y>&& r) noexcept; template<class Y> explicit shared_ptr(const weak_ptr<Y>& r); template <class Y, class D> shared_ptr(unique_ptr<Y, D>&& r); constexpr shared_ptr(nullptr_t) noexcept : shared_ptr() { } // destructor ~shared_ptr(); // assignment shared_ptr& operator=(const shared_ptr& r) noexcept; template<class Y> shared_ptr& operator=(const shared_ptr<Y>& r) noexcept; shared_ptr& operator=(shared_ptr&& r) noexcept; template<class Y> shared_ptr& operator=(shared_ptr<Y>&& r) noexcept; template <class Y, class D> shared_ptr& operator=(unique_ptr<Y, D>&& r); // modifiers void swap(shared_ptr& r) noexcept; void reset() noexcept; template<class Y> void reset(Y* p); template<class Y, class D> void reset(Y* p, D d); template<class Y, class D, class A> void reset(Y* p, D d, A a); // observers element_type* get() const noexcept; T& operator*() const noexcept; T* operator->() const noexcept; element_type& operator[](ptrdiff_t i) const; long use_count() const noexcept; explicit operator bool() const noexcept; template<class U> bool owner_before(const shared_ptr<U>& b) const; template<class U> bool owner_before(const weak_ptr<U>& b) const; }; }
Class template std::weak_ptr
namespace std { template<class T> class weak_ptr { public: using element_type = T; // constructors constexpr weak_ptr() noexcept; template<class Y> weak_ptr(const shared_ptr<Y>& r) noexcept; weak_ptr(const weak_ptr& r) noexcept; template<class Y> weak_ptr(const weak_ptr<Y>& r) noexcept; weak_ptr(weak_ptr&& r) noexcept; template<class Y> weak_ptr(weak_ptr<Y>&& r) noexcept; // destructor ~weak_ptr(); // assignment weak_ptr& operator=(const weak_ptr& r) noexcept; template<class Y> weak_ptr& operator=(const weak_ptr<Y>& r) noexcept; template<class Y> weak_ptr& operator=(const shared_ptr<Y>& r) noexcept; weak_ptr& operator=(weak_ptr&& r) noexcept; template<class Y> weak_ptr& operator=(weak_ptr<Y>&& r) noexcept; // modifiers void swap(weak_ptr& r) noexcept; void reset() noexcept; // observers long use_count() const noexcept; bool expired() const noexcept; shared_ptr<T> lock() const noexcept; template<class U> bool owner_before(const shared_ptr<U>& b) const; template<class U> bool owner_before(const weak_ptr<U>& b) const; }; }
Class template std::owner_less
namespace std { template<class T = void> struct owner_less; template<class T> struct owner_less<shared_ptr<T>> { bool operator()(const shared_ptr<T>&, const shared_ptr<T>&) const; bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const; bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const; }; template<class T> struct owner_less<weak_ptr<T>> { bool operator()(const weak_ptr<T>&, const weak_ptr<T>&) const; bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const; bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const; }; template<> struct owner_less<void> { template<class T, class U> bool operator()(const shared_ptr<T>&, const shared_ptr<U>&) const; template<class T, class U> bool operator()(const shared_ptr<T>&, const weak_ptr<U>&) const; template<class T, class U> bool operator()(const weak_ptr<T>&, const shared_ptr<U>&) const; template<class T, class U> bool operator()(const weak_ptr<T>&, const weak_ptr<U>&) const; using is_transparent = /*unspecified*/ ; }; }
namespace std { template<class T> class enable_shared_from_this { protected: constexpr enable_shared_from_this() noexcept; enable_shared_from_this(const enable_shared_from_this&) noexcept; enable_shared_from_this& operator=(const enable_shared_from_this&) noexcept; ~enable_shared_from_this(); public: shared_ptr<T> shared_from_this(); shared_ptr<T const> shared_from_this() const; weak_ptr<T> weak_from_this() noexcept; weak_ptr<T const> weak_from_this() const noexcept; private: mutable weak_ptr<T> weak_this; // exposition only }; }