std::static_pointer_cast, std::dynamic_pointer_cast, std::const_pointer_cast, std::reinterpret_pointer_cast
Defined in header <memory>
|
||
template< class T, class U > std::shared_ptr<T> static_pointer_cast( const std::shared_ptr<U>& r ) noexcept; |
(1) | (since C++11) |
template< class T, class U > std::shared_ptr<T> dynamic_pointer_cast( const std::shared_ptr<U>& r ) noexcept; |
(2) | (since C++11) |
template< class T, class U > std::shared_ptr<T> const_pointer_cast( const std::shared_ptr<U>& r ) noexcept; |
(3) | (since C++11) |
template< class T, class U > std::shared_ptr<T> reinterpret_pointer_cast( const std::shared_ptr<U>& r ) noexcept; |
(4) | (since C++17) |
Creates a new instance of std::shared_ptr whose stored pointer is obtained from r
's stored pointer using a cast expression. If r
is empty, so is the new shared_ptr
(but its stored pointer is not necessarily null).
Otherwise, the new shared_ptr
will share ownership with r
, except that it is empty if the dynamic_cast
performed by dynamic_pointer_cast
returns a null pointer.
Let Y
be typename std::shared_ptr<T>::element_type, then the resulting std::shared_ptr's stored pointer will be obtained by evaluating, respectively:
dynamic_cast
is a null pointer value, the returned shared_ptr
will be empty.)The behavior of these functions is undefined unless the corresponding cast from U*
to T*
is well formed:
Parameters
r | - | The pointer to convert |
Notes
The expressions std::shared_ptr<T>(static_cast<T*>(r.get())), std::shared_ptr<T>(dynamic_cast<T*>(r.get())) and std::shared_ptr<T>(const_cast<T*>(r.get())) might seem to have the same effect, but they all will likely result in undefined behavior, attempting to delete the same object twice!
Possible implementation
First version |
---|
template< class T, class U > std::shared_ptr<T> static_pointer_cast( const std::shared_ptr<U>& r ) noexcept { auto p = static_cast<typename std::shared_ptr<T>::element_type*>(r.get()); return std::shared_ptr<T>(r, p); } |
Second version |
template< class T, class U > std::shared_ptr<T> dynamic_pointer_cast( const std::shared_ptr<U>& r ) noexcept { if (auto p = dynamic_cast<typename std::shared_ptr<T>::element_type*>(r.get())) { return std::shared_ptr<T>(r, p); } else { return std::shared_ptr<T>(); } } |
Third version |
template< class T, class U > std::shared_ptr<T> const_pointer_cast( const std::shared_ptr<U>& r ) noexcept { auto p = const_cast<typename std::shared_ptr<T>::element_type*>(r.get()); return std::shared_ptr<T>(r, p); } |
Fourth version |
template< class T, class U > std::shared_ptr<T> reinterpret_pointer_cast( const std::shared_ptr<U>& r ) noexcept { auto p = reinterpret_cast<typename std::shared_ptr<T>::element_type*>(r.get()); return std::shared_ptr<T>(r, p); } |
Example
#include <iostream> #include <memory> struct Base { int a; virtual void f() const { std::cout << "I am base!\n";} virtual ~Base(){} }; struct Derived : Base { void f() const override { std::cout << "I am derived!\n"; } ~Derived(){} }; int main(){ auto basePtr = std::make_shared<Base>(); std::cout << "Base pointer says: "; basePtr->f(); auto derivedPtr = std::make_shared<Derived>(); std::cout << "Derived pointer says: "; derivedPtr->f(); // static_pointer_cast to go up class hierarchy basePtr = std::static_pointer_cast<Base>(derivedPtr); std::cout << "Base pointer to derived says: "; basePtr->f(); // dynamic_pointer_cast to go down/across class hierarchy auto downcastedPtr = std::dynamic_pointer_cast<Derived>(basePtr); if(downcastedPtr) { std::cout << "Downcasted pointer says: "; downcastedPtr->f(); } // All pointers to derived share ownership std::cout << "Pointers to underlying derived: " << derivedPtr.use_count() << "\n"; }
Output:
Base pointer says: I am base! Derived pointer says: I am derived! Base pointer to derived says: I am derived! Downcasted pointer says: I am derived! Pointers to underlying derived: 3
See also
constructs new shared_ptr (public member function) |