std::condition_variable_any::notify_all

From cppreference.com

Thread support library
Threads
(C++11)
this_thread namespace
(C++11)
(C++11)
(C++11)
Mutual exclusion
(C++11)
Generic lock management
(C++11)
(C++11)
(C++11)
(C++11)(C++11)(C++11)
(C++11)
(C++11)
Condition variables
(C++11)
Futures
(C++11)
(C++11)
(C++11)
(C++11)
void notify_all() noexcept;
(since C++11)

Unblocks all threads currently waiting for *this.

Parameters

(none)

Return value

(none)

Notes

The effects of notify_one()/notify_all() and each of the three atomic parts of wait()/wait_for()/wait_until() (unlock+wait, wakeup, and lock) take place in a single total order that can be viewed as modification order of an atomic variable: the order is specific to this individual condition_variable. This makes it impossible for notify_one() to, for example, be delayed and unblock a thread that started waiting just after the call to notify_one() was made.

The notifying thread does not need to hold the lock on the same mutex as the one held by the waiting thread(s); in fact doing so is a pessimization, since the notified thread would immediately block again, waiting for the notifying thread to release the lock.

Example

#include <iostream>
#include <condition_variable>
#include <thread>
#include <chrono>

std::condition_variable_any cv;
std::mutex cv_m; // This mutex is used for three purposes:
                 // 1) to synchronize accesses to i
                 // 2) to synchronize accesses to std::cerr
                 // 3) for the condition variable cv
int i = 0;

void waits()
{
    std::unique_lock<std::mutex> lk(cv_m);
    std::cerr << "Waiting... \n";
    cv.wait(lk, []{return i == 1;});
    std::cerr << "...finished waiting. i == 1\n";
}

void signals()
{
    std::this_thread::sleep_for(std::chrono::seconds(1));
    {
        std::lock_guard<std::mutex> lk(cv_m);
        std::cerr << "Notifying...\n";
    }
    cv.notify_all();

    std::this_thread::sleep_for(std::chrono::seconds(1));

    {
        std::lock_guard<std::mutex> lk(cv_m);
        i = 1;
        std::cerr << "Notifying again...\n";
    }
    cv.notify_all();
}

int main()
{
    std::thread t1(waits), t2(waits), t3(waits), t4(signals);
    t1.join(); 
    t2.join(); 
    t3.join();
    t4.join();
}

Possible output:

Waiting...
Waiting...
Waiting...
Notifying...
Notifying again...
...finished waiting. i == 1
...finished waiting. i == 1
...finished waiting. i == 1

See also

notifies one waiting thread
(public member function)