std::sqrt(std::valarray)

From cppreference.com
< cpplrm; | numericlrm; | valarray
Defined in header <valarray>
template< class T >
valarray<T> sqrt( const valarray<T>& va );

For each element in va computes the square root of the value of the element.

Parameters

va - value array to apply the operation to

Return value

Value array containing square roots of the values in va.

Notes

Unqualified function (sqrt) is used to perform the computation. If such function is not available, std::sqrt is used due to argument dependent lookup.

The function can be implemented with the return type different from std::valarray. In this case, the replacement type has the following properties:

Possible implementation

template<class T>
valarray<T> sqrt(const valarray<T>& va)
{
    valarray<T> other = va;
    for (T &i : other) {
        i = sqrt(i);
    }
    return other;
}

Example

Finds real roots of multiple quadratic equations.

#include <valarray>
#include <iostream>

int main()
{
    std::valarray<double> a(1, 8);
    std::valarray<double> b{1, 2, 3, 4, 5, 6, 7, 8};
    std::valarray<double> c = -b;
    // literals must also be of type T (double in this case)
    std::valarray<double> d = std::sqrt((b * b - 4.0 * a * c));
    std::valarray<double> x1 = (-b - d) / (2.0 * a);
    std::valarray<double> x2 = (-b + d) / (2.0 * a);
    std::cout << "quadratic equation    root 1,  root 2" << "\n";
    for (size_t i = 0; i < a.size(); ++i) {
        std::cout << a[i] << "x\u00B2 + " << b[i] << "x + " << c[i] << " = 0   ";
        std::cout << x1[i] << ", " << x2[i] << "\n";
    }
}

Output:

quadratic equation    root 1,  root 2
1x + 1x + -1 = 0   -1.61803, 0.618034
1x + 2x + -2 = 0   -2.73205, 0.732051
1x + 3x + -3 = 0   -3.79129, 0.791288
1x + 4x + -4 = 0   -4.82843, 0.828427
1x + 5x + -5 = 0   -5.8541, 0.854102
1x + 6x + -6 = 0   -6.87298, 0.872983
1x + 7x + -7 = 0   -7.88748, 0.887482
1x + 8x + -8 = 0   -8.89898, 0.898979

See also

applies the function std::pow to two valarrays or a valarray and a value
(function template)
computes square root (x)
(function)
complex square root in the range of the right half-plane
(function template)