std::sph_legendre, std::sph_legendref, std::sph_legendrel

From cppreference.com
< cpplrm; | numericlrm; | special math
double sph_legendre ( unsigned l, unsigned m, double );

double sph_legendre ( unsigned l, unsigned m, float );
double sph_legendre ( unsigned l, unsigned m, long double );
float sph_legendref( unsigned l, unsigned m, float );

long double sph_legendrel( unsigned l, unsigned m, long double );
(1) (since C++17)
double sph_legendre ( unsigned l, unsigned m, IntegralType );
(2) (since C++17)
1) Computes the spherical associated Legendre function of degree l, order m, and polar angle .
2) A set of overloads or a function template accepting an argument of any integral type. Equivalent to (1) after casting the argument to double.

Parameters

l - degree
m - order
- polar angle, measured in radians

Return value

If no errors occur, returns the value of the spherical associated Legendre function (that is, spherical harmonic with = 0) of l, m, and , where the spherical harmonic function is defined as Ym
l
(,) = (-1)m
[
(2l+1)(l-m)!
4(l+m)!
]1/2
Pm
l
(cos)eim
where Pm
l
(x)
is std::assoc_legendre(l,m,x)) and |m|l

Note that the Condon-Shortley phase term (-1)m
is included in this definition because it is omitted from the definition of Pm
l
in std::assoc_legendre.

Error handling

Errors may be reported as specified in math_errhandling

  • If the argument is NaN, NaN is returned and domain error is not reported
  • If l128, the behavior is implementation-defined

Notes

Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.

Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1

An implementation of the spherical harmonic function is available in boost.math, and it reduces to this function when called with the parameter phi set to zero.

Example

#include <cmath>
#include <iostream>
int main()
{
    // spot check for l=3, m=0
    double x = 1.2345;
    std::cout << "Y_3^0(" << x << ") = " << std::sph_legendre(3, 0, x) << '\n';

    // exact solution
    double pi = std::acos(-1);
    std::cout << "exact solution = "
              << 0.25*std::sqrt(7/pi)*(5*std::pow(std::cos(x),3)-3*std::cos(x))
              << '\n';
}

Output:

Y_3^0(1.2345) = -0.302387
exact solution = -0.302387

External links

Weisstein, Eric W. "Spherical Harmonic." From MathWorld--A Wolfram Web Resource.

See also

associated Legendre polynomials
(function)