std::experimental::pmr::polymorphic_allocator::construct
template < class U, class... Args > void construct( U* p, Args&&... args ); |
(1) | (library fundamentals TS) |
template< class T1, class T2, class... Args1, class... Args2 > void construct( std::pair<T1, T2>* p, |
(2) | (library fundamentals TS) |
template< class T1, class T2 > void construct( std::pair<T1, T2>* p ); |
(3) | (library fundamentals TS) |
template< class T1, class T2, class U, class V > void construct( std::pair<T1, T2>* p, U&& x, V&& y ); |
(4) | (library fundamentals TS) |
(5) | (library fundamentals TS) | |
(6) | (library fundamentals TS) | |
Constructs an object in allocated, but not initialized storage pointed to by p
the provided constructor arguments. If the object is of type that itself uses allocators, or if it is std::pair, passes this->resource()
down to the constructed object.
1) If std::uses_allocator<U, memory_resource*>::value==false (the type U
does not use allocators) and std::is_constructible<U, Args...>::value==true, then constructs the object as if by ::new((void *) p) U(std::forward<Args>(args)... );.
Otherwise, if std::uses_allocator<U, memory_resource*>::value==true (the type U
uses allocators, e.g. it is a container) and std::is_constructible<U, std::allocator_arg_t, memory_resource*, Args...>::value==true, then constructs the object as if by ::new((void *) p) U(std::allocator_arg, this->resource(), std::forward<Args>(args)... );.
Otherwise, if std::uses_allocator<U, memory_resource*>::value==true (the type U
uses allocators, e.g. it is a container) and std::is_constructible<U, Args..., memory_resource*>::value==true, then constructs the object as if by ::new((void *) p) U(std::forward<Args>(args)..., this->resource());.
Otherwise, the program is ill-formed.
2) First, if either T1
or T2
is allocator-aware, modifies the tuples x
and y
to include this->resource()
, resulting in the two new tuples xprime
and yprime
, according to the following three rules:
2a) if T1
is not allocator-aware (std::uses_allocator<T1, memory_resource*>::value==false) and std::is_constructible<T1, Args1...>::value==true, then xprime
is x
, unmodified.
2b) if T1
is allocator-aware (std::uses_allocator<T1, memory_resource*>::value==true), and its constructor takes an allocator tag (std::is_constructible<T1, std::allocator_arg_t, memory_resource*, Args1...>::value==true, then xprime
is
std::tuple_cat(std::make_tuple(std::allocator_arg, this->resource()), std::move(x))
2c) if T1
is allocator-aware (std::uses_allocator<T1, memory_resource*>::value==true), and its constructor takes the allocator as the last argument (std::is_constructible<T1, Args1..., memory_resource*>::value==true), then xprime
is std::tuple_cat(std::move(x), std::make_tuple(this->resource())).
2d) Otherwise, the program is ill-formed.
Same rules apply to T2
and the replacement of y
with yprime
.
Once xprime
and yprime
are constructed, constructs the pair p
in allocated storage as if by ::new((void *) p) pair<T1, T2>(std::piecewise_construct, std::move(xprime), std::move(yprime));
3) Equivalent to construct(p, std::piecewise_construct, std::tuple<>(), std::tuple<>()), that is, passes the memory resource on to the pair's member types if they accept them.
4) Equivalent to
construct(p, std::piecewise_construct, std::forward_as_tuple(std::forward<U>(x)),
std::forward_as_tuple(std::forward<V>(y)))
5) Equivalent to
construct(p, std::piecewise_construct, std::forward_as_tuple(xy.first),
std::forward_as_tuple(xy.second))
6) Equivalent to
construct(p, std::piecewise_construct, std::forward_as_tuple(std::forward<U>(xy.first)),
std::forward_as_tuple(std::forward<V>(xy.second)))
Parameters
p | - | pointer to allocated, but not initialized storage |
args... | - | the constructor arguments to pass to the constructor of T
|
x | - | the constructor arguments to pass to the constructor of T1
|
y | - | the constructor arguments to pass to the constructor of T2
|
xy | - | the pair whose two members are the constructor arguments for T1 and T2
|
Return value
(none)
Notes
This function is called (through std::allocator_traits) by any allocator-aware object, such as std::vector, that was given a std::polymorphic_allocator as the allocator to use. Since memory_resource*
implicitly converts to polymorphic_allocator
, the memory resource pointer will propagate to any allocator-aware subobjects using polymorphic allocators.
See also
[static] |
constructs an object in the allocated storage (function template) |
(deprecated in C++17)(removed in C++20) |
constructs an object in allocated storage (public member function of std::allocator ) |