std::riemann_zeta, std::riemann_zetaf, std::riemann_zetal

From cppreference.com
Technical specifications
Filesystem library (filesystem TS)
Library fundamentals (library fundamentals TS)
Library fundamentals 2 (library fundamentals 2 TS)
Extensions for parallelism (parallelism TS)
Extensions for parallelism 2 (parallelism TS v2)
Extensions for concurrency (concurrency TS)
Concepts (concepts TS)
Ranges (ranges TS)
Special mathematical functions (special math TR)
double riemann_zeta( double arg );

double riemann_zeta( float arg );
double riemann_zeta( long double arg );
float riemann_zetaf( float arg );

long double riemann_zetal( long double arg );
(1)
double riemann_zeta( IntegralType arg );
(2)
1) Computes the Riemann zeta function of arg.
4) A set of overloads or a function template accepting an argument of any integral type. Equivalent to (1) after casting the argument to double.

As all special functions, riemann_zeta is only guaranteed to be available in <cmath> if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.

Parameters

arg - value of a floating-point or integral type

Return value

If no errors occur, value of the Riemann zeta function of arg, (arg), defined for the entire real axis:

  • For arg>1,
    n=1
    n-arg
  • For 0arg1,
    1
    1-21-arg

    n=1
    (-1)n-1
    n-arg
  • For arg<0, 2arg
    arg-1
    sin(
    arg
    2
    )(1arg)(1arg)

Error handling

Errors may be reported as specified in math_errhandling

  • If the argument is NaN, NaN is returned and domain error is not reported

Notes

Implementations that do not support TR 29124 but support TR 19768, provide this function in the header tr1/cmath and namespace std::tr1

An implementation of this function is also available in boost.math

Example

(works as shown with gcc 6.0)

#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
int main()
{
    // spot checks for well-known values
    std::cout << "(-1) = " << std::riemann_zeta(-1) << '\n'
              << "(0) = " << std::riemann_zeta(0) << '\n'
              << "(1) = " << std::riemann_zeta(1) << '\n'
              << "(0.5) = " << std::riemann_zeta(0.5) << '\n'
              << "(2) = " << std::riemann_zeta(2) << ' '
              << "(/6 = " << std::pow(std::acos(-1),2)/6 << ")\n";
}

Output:

(-1) = -0.0833333
(0) = -0.5
(1) = inf
(0.5) = -1.46035
(2) = 1.64493 (/6 = 1.64493)

External links

Weisstein, Eric W. "Riemann Zeta Function." From MathWorld--A Wolfram Web Resource.