Задача А. Проверка

Имя входного файла: стандартный ввод или input.txt Имя выходного файла: стандартный вывод или output.txt

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

 $K \ni B \ni -$ учитель математики в школе. У него есть любимая последовательность чисел b_1, b_2, \ldots, b_m , состоящая из m различных чисел. Когда $K \ni B \ni$ скучно при проверке домашних заданий, он ищет b в виде подпоследовательности чисел, записанных в тетради ученика.

Как-то раз КэВэ увидел в тетради ученика последовательность из n чисел a_1, a_2, \ldots, a_n . Учитель решил применить новый метод проверки домашних заданий. А именно, для каждой позиции i КэВэ ищет минимальный индекс r_i , такой что в последовательности $a_i, a_{i+1}, a_{i+2}, \ldots, a_{r_i}$ можно встретить b как подпоследовательность. Помогите ему для каждого i найти нужное r_i или укажите, что такого не найдётся.

Напомним, что подпоследовательностью для a_1, a_2, \ldots, a_n называется набор элементов a, полученный из a_1, a_2, \ldots, a_n удалением некоторых ее элементов без изменения порядка следования оставшихся.

Формат входных данных

В первой строке вводится два целых числа n и m $(1 \leqslant n, m \leqslant 200\,000)$ — длина последовательности a и b соответственно.

Во второй строке вводится n целых чисел $a_1, a_2, a_3, \ldots, a_n$ $(1 \le a_i \le 200\,000)$.

В третьей строке вводится m целых чисел $b_1, b_2, b_3, \ldots, b_m$ ($1 \le b_i \le 200\,000$). Гарантируется, что все числа последовательности b_i различны.

Формат выходных данных

В единственной строке выведите n чисел, i-е из них должно быть равно искомому индексу r_i . В случае, если такого r_i не найдётся, выведите вместо него число -1.

Примеры

стандартный ввод	стандартный вывод
7 3	6 6 6 -1 -1 -1 -1
1 2 1 3 1 2 1	
1 3 2	
10 2	4 4 4 9 9 9 9 9 -1 -1
1 2 3 4 5 1 2 3 4 5	
3 4	

Замечание

В первом примере b обязательно закончится в позиции 6, потому что это единственное число 2, стоящее после числа 3. Например, элементы с позиций $\{3,\,4,\,6\}$ дают нужную подпоследовательность

Во втором примере подпоследовательность b встречается в элементах с позиций $\{3,4\}$ и $\{8,9\}$.

Система оценки

Тесты к этой задаче состоят из шести групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов необходимых групп.

Длинный тур отборочного этапа Открытой олимпиады школьников 2021—2022 учебного года Россия. 1 ноября 2021 — 23 января 2022

Группа	Голиг	Доп. ограничения		Нообу пручили	Vor a rorrman vy
Группа	Баллы	n	m	Необх. группы	Комментарий
0	0	_	_	_	Тесты из условия.
1	10	$n \leqslant 50$	$m \leqslant 50$	0	
2	11	$n \leqslant 1000$	$m \leqslant 1000$	0, 1	
3	12	$n \leqslant 10000$	$m \leqslant 10000$	0, 1, 2	
4	22	_	$m \leqslant 2$		
5	15	_	$m \leqslant 1000$	0, 1, 2, 4	
6	30	_	_	0, 1, 2, 3, 4, 5	

Задача В. Ремонт дороги

Имя входного файла: стандартный ввод или input.txt Имя выходного файла: стандартный вывод или output.txt

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Наступила осень, стали лить дожди, а коммунальные службы Берляндии начали ремонт дорог. В результате многочисленных дорожных реформ Берляндии, в ней осталась только одна дорога, которая состоит из участков, последовательно пронумерованных целыми числами от -10^9 до 10^9 . Решено было ремонтировать некоторые участки главной дороги Берляндии на отрезке с l-го по r-й. К сожалению, иногда некоторые участки дорог затапливаются дождями, поэтому ремонт таких участков дорог невозможен.

Изначально уровень воды на каждом участке дороги равен 0. Далее происходят n событий:

- 1. Ремонтные службы хотят узнать, можно ли ремонтировать x-й участок дороги. Для этого им нужно узнать текущий уровень воды на x-м участке дороги.
- 2. Проходит ливень над x-м участком дороги, в результате чего уровень воды на нём увеличивается на 1.

Если после этого где-то уровень воды поднялся до 2, то вода начинает перетекать. На каждом участке дороги с номером i, где уровень воды был 2, он опускается до 0, а на участках с номерами i-1 и i+1 уровень воды увеличивается на 1. Все такие перетекания происходят одновременно. Если после этого на каких-то участках уровень воды снова поднялся до 2, то процесс повторяется одновременно для них всех и продолжается до тех пор, пока на всех участках уровень воды не будет меньше 2. Можно показать, что такой процесс завершится, а также что никогда промежуточный уровень воды не поднимется выше 2. Следующее событие произойдёт только после окончания всех перетеканий. Также гарантируется, что вода никогда не вытечет за пределы участков дороги с l-го по r-й.

Вам необходимо ответить на все запросы первого типа.

Формат входных данных

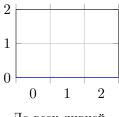
Первая строка входных данных содержит три целых числа $n,\ l$ и $r\ (1\leqslant n\leqslant 200\,000,\ -10^9\leqslant l\leqslant r\leqslant 10^9)$ — количество запросов и ограничения на номера участков из запросов.

В следующих n строках вводятся по символу c_i и целому числу x_i ($l \leqslant x_i \leqslant r$).

- Если c_i равняется «?», то в i-м запросе требуется определить уровень воды на x_i -м участке дороги.
- Если c_i равняется «+», то в i-м запросе уровень воды на x_i -м участке увеличивается на единицу.

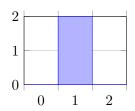
Гарантируется, что вода никогда не вытечет за пределы отрезка [l,r].

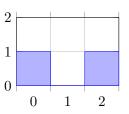
Формат выходных данных


Для каждого запроса первого типа в отдельной строке выведите одно целое число (0 или 1) — уровень воды на участке из запроса.

Примеры

стандартный ввод	стандартный вывод
5 0 2	1
+ 1	0
+ 1	1
? 0	
? 1	
? 2	
7 0 4	1
+ 1	0
+ 2	1
+ 3	
+ 2	
? 0	
? 2	
? 4	
10 -5 5	0
+ 0	1
+ -1	1
+ 1	1
? -2	0
? 0	1
+ -1	
? -1	
? 0	
? 1	
? 2	


Замечание


Ниже представлены картинки, поясняющие первые два теста из условия. По вертикальной оси отмечены уровни воды, а по горизонтальной — координаты.

1 0 0 1

2

До всех ливней

После 1-го ливня

после 2 ливня

Промежуточное состояние Окончательное состояние после 2-го ливня

Рис. 1: Первый тест из условия

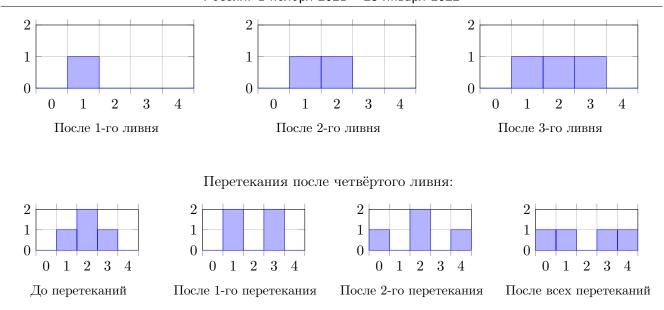


Рис. 2: Второй тест из условия

Система оценки

Тесты к этой задаче состоят из 4 групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов некоторых из предыдущих групп. Обратите внимание, прохождение тестов из условия не требуется для некоторых групп. Offline-проверка означает, что результаты тестирования вашего решения на данной группе станут доступны только после окончания соревнования.

Группа Баллы		Доп.	ограничен	RИІ	Необх. группы	Комментарий
Группа Баллы	n	l	r			
0	0	_	_	_	_	Тесты из условия.
1	26	$n \leqslant 100$	l = 0	r = 100	_	
2	21	$n \leqslant 1000$	$l = -10^9$	$r = 10^9$	0, 1	
3	22	$n \leqslant 10000$	l = 0	r = 1000	1	
4	31	_	$l = -10^9$	$r = 10^9$	0, 1, 2, 3	Offline-проверка.

Задача С. Новые кампусы!

Имя входного файла: стандартный ввод или input.txt Имя выходного файла: стандартный вывод или output.txt

Ограничение по времени: 5 секунд Ограничение по памяти: 1024 мегабайта

Недавно вы стали ректором одного из университетов и решили открыть в нем новую программу! На ней вы будете учить студентов спортивному программированию. Поэтому у них будут два типа занятий: спорт (чтобы развить силу рук) и программирование. Основным достоинством этой программы будет обучение в двух кампусах одновременно — по четным дням студенты будут ездить в первый кампус, а по нечетным — во второй.

Оба кампуса вашего университета устроены очень необычно: в каждом из них есть по n аудиторий, пронумерованных от 1 до n, и по n-1 переходу между ними, при этом из любой аудитории можно добраться в любую другую по переходам.

Однако вы обнаружили, что студентам сложно ориентироваться сразу в двух кампусах, и решили упростить им жизнь. Вы решили выбрать два номера аудиторий u и v ($u \neq v$): в аудитории с номером u студенты будут заниматься спортом, а в аудитории с номером v — программированием. Обратите внимание, что u и v выбираются одинаковыми для обоих кампусов.

Так как вы хотите, чтобы студенты тратили меньше времени на перемещение между аудиториями, вам нужно минимизировать суммарное расстояние, которое потребуется преодолеть студентам между выбранными аудиториями в каждом из кампусов. Более формально, вам нужно найти такие номера u,v, что $d_1(u,v)+d_2(u,v)$ минимально, где $d_1(u,v)$ — это расстояние между аудиториями u и v в первом кампусе, а $d_2(u,v)$ — во втором. Расстоянием между аудиториями называется минимальное число переходов, через которые нужно пройти, чтобы добраться из одной аудитории в другую.

В обоих кампусах есть вход, и он ведет в аудиторию 1. Для всех остальных аудиторий разработан план эвакуации. В первом кампусе для i-й аудитории p_i равно номеру следующей аудитории на пути из i-й аудитории в первую. Во втором кампусе для i-й аудитории q_i равно номеру следующей аудитории на пути из i-й аудитории в первую.

Формат входных данных

В первой строке входных данных содержится одно целое число $n\ (2\leqslant n\leqslant 10^6)$ — количество аудиторий.

В следующей строке находятся n-1 целых чисел $p_2, p_3, p_4, \ldots, p_n$ $(1 \le p_i \le n)$, где p_i — это следующая (кроме i) аудитория на пути от i-й до первой в первом кампусе.

В следующей строке находятся n-1 целых чисел $q_2, q_3, q_4, \ldots, q_n$ $(1 \leqslant q_i \leqslant n)$, где q_i — это следующая (кроме i) аудитория на пути от i-й до первой во втором кампусе.

Формат выходных данных

В первой строке выведите минимальную величину $d_1(u, v) + d_2(u, v)$.

Во второй строке выведите любую пару вершин u, v, таких что $d_1(u, v) + d_2(u, v)$ минимально.

Примеры

стандартный ввод	стандартный вывод
5	2
3 1 2 3	5 3
5 4 1 3	
5	2
5 1 2 3	2 4
4 4 1 4	
7	3
1 2 2 7 1 3	2 1
5 5 5 1 5 2	
9	4
5 2 1 4 9 8 3 7	2 1
1 4 7 9 8 2 5 3	

Замечание

В первом примере в первом кампусе есть переходы между аудиториями 3 и 2, 1 и 3, 2 и 4, 3 и 5. Во втором кампусе есть переходы между аудиториями 5 и 2, 4 и 3, 1 и 4, 3 и 5.

Система оценки

Тесты к этой задаче состоят из 12 групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов некоторых из предыдущих групп. Обратите внимание, прохождение тестов из условия не требуется для некоторых групп. Offline-проверка означает, что результаты тестирования вашего решения на данной группе станут доступны только после окончания соревнования.

Длинный тур отборочного этапа Открытой олимпиады школьников 2021—2022 учебного года Россия. 1 ноября 2021 — 23 января 2022

Группа	Баллы	Доп. ограничения	Необх. группы	Комментарий	
Группа	Баллы	n	псоох. группы	помментарии	
0	0	_	_	Тесты из условия.	
1	12	$n \leqslant 500$	0		
2	11	$n \leqslant 5000$	0, 1		
3	8	$n \leqslant 50000$	0, 1, 2		
4	11	$n \leqslant 100000$	_	В первом кампусе существует аудитория, соединенная прямыми переходами со всеми остальными аудиториями	
5	12	$n \leqslant 100000$	_	В обоих кампусах для каждой аудитории существует не более двух переходов в соседние аудитории	
6	10	$n \leqslant 100000$	5	В первом кампусе для каждой аудитории существует не более двух переходов в соседние аудитории	
7	9	$n \leqslant 100000$	0 - 6		
8	10	$n \leqslant 200000$	0 - 7		
9	11	$n \leqslant 300000$	0 - 8	Offline-проверка.	
10	3	$n \leqslant 500000$	0 - 9	Offline-проверка.	
11	2	$n \leqslant 750000$	0 - 10	Offline-проверка.	
12	1	_	0 – 11	Offline-проверка.	