
XIV Moscow Open Olympiad in Informatcis, day 1
Russia, Moscow, March 6

Problem Barcelona. Median mountain range
Input file: input.txt or standard input
Output file: output.txt or standard output
Time limit: 2 seconds
Memory limit: 512 megabytes

Berland — is a huge country with diverse geography. One of the most famous natural attractions of Berland
is the “Median mountain range”. This mountain range is n mountain peaks, located on one straight line
and numbered in order of 1 to n. The height of the i-th mountain top is ai.

“Median mountain range’ is famous for the so called alignment of mountain peaks happening to it every
day. At the moment of alignment simultaneously for each mountain from 2 to n − 1 its height becomes
equal to the median height among it and two neighboring mountains. Formally, if before the alignment
the heights were equal bi, then after the alignment new heights ai are as follows: a1 = b1, an = bn and for
all i from 2 to n− 1 ai = median(bi−1, bi, bi+1). The median of three integers is the second largest number
among them. For example, median(5, 1, 2) = 2, and median(4, 2, 4) = 4.

Recently, Berland scientists have proved that whatever are the current heights of the mountains, the
alignment process will stabilize sooner or later, i.e. at some point the altitude of the mountains won’t
changing after the alignment any more. The government of Berland wants to understand how soon it will
happen, i.e. to find the value of c — how many alignments will occur, which will change the height of at
least one mountain. Help scientists solve this important problem!

Note that in some test groups, in addition to the c value, you will need to determine the mountain heights
after the c alignments, i.e. the heights of the mountains as they will stay forever.

Input
The first line contains integers n and t (1 ≤ n ≤ 500 000, 0 ≤ t ≤ 1) — the number of mountains and the
parameter describing whether it’s required to determine the final heights of the mountains.

The second line contains integers a1, a2, a3, . . . , an (1 ≤ ai ≤ 109) — current heights of the mountains.

Output
In the first line print c — the number of alignments, which change the height of at least one mountain.

In case t = 1, the second line should contain n integers — the final heights of the mountains after c
alignments.

Examples
input output

5 1
1 2 1 2 1

2
1 1 1 1 1

6 1
1 3 2 5 4 6

1
1 2 3 4 5 6

6 0
1 1 2 2 1 1

0

Note
In the first example, the heights of the mountains at index 1 and 5 never change. Since the median of 1,
2, 1 is 1, the second and the fourth mountains will have height 1 after the first alignment, and since the
median of 2, 1, 2 is 2, the third mountain will have height 2 after the first alignment. This way, after one
alignment the heights are 1, 1, 2, 1, 1. After the second alignment the heights change into 1, 1, 1, 1, 1
and never change from now on, so there are only 2 alignments changing the mountain heights.

Page 1 of 7



XIV Moscow Open Olympiad in Informatcis, day 1
Russia, Moscow, March 6

In the third examples the alignment doesn’t change any mountain height, so the number of alignments
changing any height is 0. Since t = 0, you shouldn’t print the resulting heights of the mountains.

Scoring
Tests for this problem are divided into six groups. For each of the groups you earn points only if your
solution passes all tests in this group and all tests of the required groups. Offline evaluation means
that your submission will be evaluated on the tests of the group only after the end of the contest.

Additional constraints
Group Points

n ai t
Req. groups Comment

0 0 – – – – Example tests.

1 19 n ≤ 1000 – – 0 It’s guaranteed, that c ≤ 10 000.

2 24 – ai ≤ 2 – –

3 14 – ai ≤ 100 t = 0 –

4 14 – ai ≤ 100 – 0, 2, 3

5 14 – – t = 0 3

6 15 – – – 0, 1, 2, 3, 4, 5 Offline evaluation.

Page 2 of 7



XIV Moscow Open Olympiad in Informatcis, day 1
Russia, Moscow, March 6

Problem Wimbledon. Unusual competitions
Input file: input.txt or standard input
Output file: output.txt or standard output
Time limit: 1 second
Memory limit: 512 megabytes

The teacher gave Dmitry’s class a very strange task — she asked every student to come up with a sequence
of arbitrary length, consisting only of opening and closing brackets. After that all the students took turns
naming the sequences they had invented. When the Dima’s turn come, he suddenly realized that all his
classmates got the right bracketed sequence, and whether he got the right bracketed sequence, he did not
know.

Dima suspects now that he simply missed the word “right” in the task statement, so now he wants to save
the situation by modifying his sequence slightly. More precisely, he can arbitrary amount of times (possibly
zero) perform the reorder operation. The reorder operation consists of choosing an arbitrary subsegment
of the sequence and then reordering all the characters in it in an arbitrary way. Such operation takes
l nanoseconds, where l is the length of the subsegment being reordered. It’s easy to see that reorder
operation doesn’t affect the number of opening and closing brackets doesn’t change.

Since Dima will soon have to answer, he wants to make his sequence right as fast as possible. Help him
to do this, or determine that it’s impossible.

Input
The first line contains a single integer n (1 ≤ n ≤ 106) — the length of Dima’s sequence.

The second line contains string of length n, consisting of characters “(” and “)” only.

Output
Print a single integer — the minimum number of nanoseconds to make the sequence right or “-1” if it is
impossible to do so.

Examples
input output

8
))((())(

6

3
(()

-1

Note
A bracketed sequence is called right if by inserting “+” and “1” you can get a well-formed mathematical
expression from it. For example, sequences “(())()”, “()” and “(()(()))” are right, while “)(”, “(()”
and “(()))(” are not.

In the first example we can firstly reorder the segment from first to the fourth character, replacing it with
“()()”, the whole sequence will be “()()())(”. And then reorder the segment from the seventh to eighth
character, replacing it with “()”. In the end the sequence will be “()()()()”, while the total time spent
is 4 + 2 = 6 nanoseconds.

Page 3 of 7



XIV Moscow Open Olympiad in Informatcis, day 1
Russia, Moscow, March 6

Scoring
Tests for this problem are divided into two groups. For each of the groups you earn points only if your
solution passes all tests in this group and all tests of the previous groups.

Additional constraints
Group Points

n
Comments

0 0 – Example tests.

1 50 n ≤ 1000

2 50 –

Page 4 of 7



XIV Moscow Open Olympiad in Informatcis, day 1
Russia, Moscow, March 6

Problem Zermatt. Assigning Fares
Input file: input.txt or standard input
Output file: output.txt or standard output
Time limit: 6 seconds
Memory limit: 512 megabytes

Mayor of city M. decided to launch several new metro lines during 2020. Since the city has a very limited
budget, it was decided not to dig new tunnels but to use the existing underground network.

The tunnel system of the city M. consists of n metro stations. The stations are connected with n − 1
bidirectional tunnels. Between every two stations v and u there is exactly one simple path. Each metro
line the mayor wants to create is a simple path between stations ai and bi. Metro lines can intersects
freely, that is, they can share common stations or even common tunnels. However, it’s not yet decided
which of two directions each line will go. More precisely, between the stations ai and bi the trains will go
either from ai to bi, or from bi to ai, but not simultaneously.

The city M uses complicated faring rules. Each station is assigned with a positive integer ci — the fare
zone of the station. The cost of travel from v to u is defined as cu− cv roubles. Of course, such travel only
allowed in case there is a metro line, the trains on which go from v to u. Mayor doesn’t want to have any
travels with a negative cost, so it was decided to assign directions of metro lines and station fare zones in
such a way, that fare zones are strictly increasing during any travel on any metro line.

Mayor wants firstly assign each station a fare zone and then choose a lines direction, such that all fare
zones are increasing along any line. In connection with the approaching celebration of the day of the city,
the mayor wants to assign fare zones so that the maximum ci will be as low as possible. Please help
mayor to design a new assignment or determine if it’s impossible to do. Please note that you only need
to assign the fare zones optimally, you don’t need to print lines’ directions. This way, you solution will be
considered correct if there will be a way to assign directions of every metro line, so that the fare zones
will be strictly increasing along any movement of the trains.

Please note, that in some groups it’s not required to minimize the answer, you only need to determine
whether it’s possible to assign fare zones in a valid way.

Input
The first line contains an integers n, m, t (2 ≤ n,≤ 500 000, 1 ≤ m ≤ 500 000, 0 ≤ t ≤ 1) — the number
of stations in the city, the number of metro lines, and the parameter t. In case t = 0 you don’t have to
minimize the answer. In case t = 1 you should find an answer with the largest fare zone being the smallest
possible.

Each of the following n − 1 lines describes another metro tunnel. Each tunnel is described with integers
vi, ui (1 ≤ vi, ui ≤ n, vi 6= ui). It’s guaranteed, that there is exactly one simple path between any two
stations.

Each of the following m lines describes another metro line. Each line is described with integers ai, bi
(1 ≤ ai, bi ≤ n, ai 6= bi).

Output
In the first line print integer k — the maximum fare zone used. In case parameter t is 0, you don’t have
to minimize k. In case t = 1, the k should be the smallest possible.

In the next line print integers c1, c2, . . . , cn (1 ≤ ci ≤ k) — stations’ fare zones.

In case there are several possible answers, print any of them. In case it’s impossible to assign fare zones,
print “-1”.

Page 5 of 7



XIV Moscow Open Olympiad in Informatcis, day 1
Russia, Moscow, March 6

Examples
input output

3 1 1
1 2
2 3
1 3

3
1 2 3

4 3 0
1 2
1 3
1 4
2 3
2 4
3 4

-1

Note
In the first example, line 1→ 3 goes through the stations 1, 2, 3 in this order. In this order the fare zones
of the stations are increasing. Since this line has 3 stations, at least three fare zones are needed. So the
answer 1, 2, 3 is optimal.

In the second example, it’s impossible to assign fare zones to be consistent with a metro lines.

Scoring
Tests for this problem are divided into ten groups. For each of the groups you earn points only if your
solution passes all tests in this group and all tests in required groups. Offline evaluation means that
your submission will be evaluated on the tests of the group only after the end of the contest.

In the groups 4 and 5 there is no tunnel, which belongs to two different lines simultaneously.

The length of the metro line is the number of tunnels it contains.

Additional constraints
Group Points

n, m t
Req. groups Comment

0 0 – – – Example tests.

1 6 n, m ≤ 8 – 0

2 10 n, m ≤ 15 – 0, 1

3 15 n, m ≤ 100 – 0, 1, 2

4 11 n, m ≤ 100 000 – – No common tunnels.

5 10 – – 4 No common tunnels.

6 8 – – – All tunnels have a
common endpoint.

7 10 n, m ≤ 100 000 t = 0 – Total lines length is at
most 100 000.

8 6 – t = 0 7

9 14 n, m ≤ 100 000 – 0, 1, 2, 3, 4, 7

10 10 – – 0 – 9 Offline evaluation.

Page 6 of 7



XIV Moscow Open Olympiad in Informatcis, day 1
Russia, Moscow, March 6

Problem Dakar. Double Palindrome
Input file: input.txt or standard input
Output file: output.txt or standard output
Time limit: 2 seconds
Memory limit: 512 megabytes

Vanya works at the factory producing palindromes. The factory has a workpiece — a string s line of length
n, consisting of lowercase English letters, from which Vanya can cut out any substring for sale. We remind
you that palindrome — is a string that reads in the same way from left to right and from right to left.

A lot of people are fed up with a usual palindromes, so Vanya decided to produce double palindromes
instead. Double palindrome is a string formed by a concatenation of two palindromes of equal length. For
example, the strings “aabb”, “aaaa” are double palindromes, while strings “abba” and “aaaabb” are not.

Vanya wonders how many ways are there to cut out double palindrome from s. In other words, how many
there are pairs (l, r), such that substring slsl+1 . . . sr is a double palindrome. Please help Vanya to find
an answer to this question.

Input
The first line contains an integer n (1 ≤ n ≤ 500 000) — the length of the string s. The second contains a
string s, consisting of lowercase English letters.

Output
Print a single integer — the number of double palindrome substrings.

Examples
input output

6
abacac

6

5
aaaaa

6

Note
In the first example, there are 5 double palindromes of length 2 (“ab”, “ba”, “ac”, “ca” and “ac”), and the
whole string is a double palindrome as well (“abacac”).

Scoring
Tests for this problem are divided into three groups. For each of the groups you earn points only if your
solution passes all tests in this group and all tests of the previous groups.

Additional constraints
Group Points

n
Comment

0 0 – Example tests.

1 19 n ≤ 500

2 33 n ≤ 5000

3 48 –

Page 7 of 7


