Implementation defined behavior control

From cppreference.com
< clrm; | preprocessor

Implementation defined behavior is controlled by #pragma directive.

Syntax

#pragma pragma_params (1)
_Pragma ( string-literal ) (2) (since C99)
1) Behaves in an implementation-defined manner (unless pragma_params is one of the standard pragmas shown below.
2) Removes the encoding prefix (if any), the outer quotes, and leading/trailing whitespace from string-literal, replaces each \" with " and each \\ with \, then tokenizes the result (as in translation stage 3), and then uses the result as if the input to #pragma in (1).

Explanation

The pragma directive controls implementation-specific behavior of the compiler, such as disabling compiler warnings or changing alignment requirements. Any pragma that is not recognized is ignored.

Standard pragmas

The following three pragmas are defined by the language standard:

#pragma STDC FENV_ACCESS arg (1)
#pragma STDC FP_CONTRACT arg (2)
#pragma STDC CX_LIMITED_RANGE arg (3)

where arg is either ON or OFF or DEFAULT.

1) If set to ON, informs the compiler that the program will access or modify floating-point environment, which means that optimizations that could subvert flag tests and mode changes (e.g., global common subexpression elimination, code motion, and constant folding) are prohibited. The default value is implementation-defined, usually OFF.
2) Allows contracting of floating-point expressions, that is optimizations that omit rounding errors and floating-point exceptions that would be observed if the expression was evaluated exactly as written. For example, allows the implementation of (x*y) + z with a single fused multiply-add CPU instruction. The default value is implementation-defined, usually ON.
3) Informs the compiler that multiplication, division, and absolute value of complex numbers may use simplified mathematical formulas (x+iy)(u+iv) = (xu-yv)+i(yu+xv), (x+iy)/(u+iv) = [(xu+yv)+i(yu-xv)]/(u2
+v2
)
, and |x+iy| = x2
+y2
, despite the possibility of intermediate overflow. In other words, the programmer guarantees that the range of the values that will be passed to those function is limited. The default value is OFF

Note: compilers that do not support these pragmas may provide equivalent compile-time options, such as gcc's -fcx-limited-range and -ffp-contract.

Non-standard pragmas

#pragma once

#pragma once is a non-standard pragma that is supported by the vast majority of modern compilers. If it appears in a header file, it indicates that it is only to be parsed once, even if it is (directly or indirectly) included multiple times in the same source file.

Standard approach to preventing multiple inclusion of the same header is by using include guards:

#ifndef LIBRARY_FILENAME_H
#define LIBRARY_FILENAME_H
// contents of the header
#endif /* LIBRARY_FILENAME_H */

So that all but the first inclusion of the header in any translation unit are excluded from compilation. All modern compilers record the fact that a header file uses an include guard and do not re-parse the file if it is encountered again, as long as the guard is still defined. (see e.g. gcc)

With #pragma once, the same header appears as

#pragma once
// contents of the header

Unlike header guards, this pragma makes it impossible to erroneously use the same macro name in more than one file. On the other hand, since with #pragma once files are excluded based on their filesystem-level identity, this can't protect against including a header twice if it exists in more than one location in a project.

#pragma pack

References

  • C11 standard (ISO/IEC 9899:2011):
  • 6.10.9 Pragma operator (p: 178)
  • C99 standard (ISO/IEC 9899:1999):
  • 6.10.6 Pragma directive (p: 159)
  • C89/C90 standard (ISO/IEC 9899:1990):
  • 3.8.6 Pragma directive

See also

External links