Unicode Objects and Codecs¶
Unicode Objects¶
Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in order to allow handling the complete range of Unicode characters while staying memory efficient. There are special cases for strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112 (which is the full Unicode range).
Py_UNICODE* and UTF-8 representations are created on demand and cached in the Unicode object. The Py_UNICODE* representation is deprecated and inefficient.
Due to the transition between the old APIs and the new APIs, Unicode objects can internally be in two states depending on how they were created:
“canonical” Unicode objects are all objects created by a non-deprecated Unicode API. They use the most efficient representation allowed by the implementation.
“legacy” Unicode objects have been created through one of the deprecated APIs (typically
PyUnicode_FromUnicode()
) and only bear the Py_UNICODE* representation; you will have to callPyUnicode_READY()
on them before calling any other API.
Note
The “legacy” Unicode object will be removed in Python 3.12 with deprecated APIs. All Unicode objects will be “canonical” since then. See PEP 623 for more information.
Unicode Type¶
These are the basic Unicode object types used for the Unicode implementation in Python:
-
type Py_UCS4¶
-
type Py_UCS2¶
-
type Py_UCS1¶
- Part of the Stable ABI.
These types are typedefs for unsigned integer types wide enough to contain characters of 32 bits, 16 bits and 8 bits, respectively. When dealing with single Unicode characters, use
Py_UCS4
.New in version 3.3.
-
type Py_UNICODE¶
This is a typedef of
wchar_t
, which is a 16-bit type or 32-bit type depending on the platform.Changed in version 3.3: In previous versions, this was a 16-bit type or a 32-bit type depending on whether you selected a “narrow” or “wide” Unicode version of Python at build time.
-
type PyASCIIObject¶
-
type PyCompactUnicodeObject¶
-
type PyUnicodeObject¶
These subtypes of
PyObject
represent a Python Unicode object. In almost all cases, they shouldn’t be used directly, since all API functions that deal with Unicode objects take and returnPyObject
pointers.New in version 3.3.
-
PyTypeObject PyUnicode_Type¶
- Part of the Stable ABI.
This instance of
PyTypeObject
represents the Python Unicode type. It is exposed to Python code asstr
.
The following APIs are C macros and static inlined functions for fast checks and access to internal read-only data of Unicode objects:
-
int PyUnicode_Check(PyObject *obj)¶
Return true if the object obj is a Unicode object or an instance of a Unicode subtype. This function always succeeds.
-
int PyUnicode_CheckExact(PyObject *obj)¶
Return true if the object obj is a Unicode object, but not an instance of a subtype. This function always succeeds.
-
int PyUnicode_READY(PyObject *unicode)¶
Ensure the string object o is in the “canonical” representation. This is required before using any of the access macros described below.
Returns
0
on success and-1
with an exception set on failure, which in particular happens if memory allocation fails.New in version 3.3.
Deprecated since version 3.10, will be removed in version 3.12: This API will be removed with
PyUnicode_FromUnicode()
.
-
Py_ssize_t PyUnicode_GET_LENGTH(PyObject *unicode)¶
Return the length of the Unicode string, in code points. unicode has to be a Unicode object in the “canonical” representation (not checked).
New in version 3.3.
-
Py_UCS1 *PyUnicode_1BYTE_DATA(PyObject *unicode)¶
-
Py_UCS2 *PyUnicode_2BYTE_DATA(PyObject *unicode)¶
-
Py_UCS4 *PyUnicode_4BYTE_DATA(PyObject *unicode)¶
Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct character access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND()
to select the right macro. Make surePyUnicode_READY()
has been called before accessing this.New in version 3.3.
-
PyUnicode_WCHAR_KIND¶
-
PyUnicode_1BYTE_KIND¶
-
PyUnicode_2BYTE_KIND¶
-
PyUnicode_4BYTE_KIND¶
Return values of the
PyUnicode_KIND()
macro.New in version 3.3.
Deprecated since version 3.10, will be removed in version 3.12:
PyUnicode_WCHAR_KIND
is deprecated.
-
int PyUnicode_KIND(PyObject *unicode)¶
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Unicode object uses to store its data. unicode has to be a Unicode object in the “canonical” representation (not checked).
New in version 3.3.
-
void *PyUnicode_DATA(PyObject *unicode)¶
Return a void pointer to the raw Unicode buffer. unicode has to be a Unicode object in the “canonical” representation (not checked).
New in version 3.3.
-
void PyUnicode_WRITE(int kind, void *data, Py_ssize_t index, Py_UCS4 value)¶
Write into a canonical representation data (as obtained with
PyUnicode_DATA()
). This function performs no sanity checks, and is intended for usage in loops. The caller should cache the kind value and data pointer as obtained from other calls. index is the index in the string (starts at 0) and value is the new code point value which should be written to that location.New in version 3.3.
-
Py_UCS4 PyUnicode_READ(int kind, void *data, Py_ssize_t index)¶
Read a code point from a canonical representation data (as obtained with
PyUnicode_DATA()
). No checks or ready calls are performed.New in version 3.3.
-
Py_UCS4 PyUnicode_READ_CHAR(PyObject *unicode, Py_ssize_t index)¶
Read a character from a Unicode object unicode, which must be in the “canonical” representation. This is less efficient than
PyUnicode_READ()
if you do multiple consecutive reads.New in version 3.3.
-
Py_UCS4 PyUnicode_MAX_CHAR_VALUE(PyObject *unicode)¶
Return the maximum code point that is suitable for creating another string based on unicode, which must be in the “canonical” representation. This is always an approximation but more efficient than iterating over the string.
New in version 3.3.
-
Py_ssize_t PyUnicode_GET_SIZE(PyObject *unicode)¶
Return the size of the deprecated
Py_UNICODE
representation, in code units (this includes surrogate pairs as 2 units). unicode has to be a Unicode object (not checked).Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate to using
PyUnicode_GET_LENGTH()
.
-
Py_ssize_t PyUnicode_GET_DATA_SIZE(PyObject *unicode)¶
Return the size of the deprecated
Py_UNICODE
representation in bytes. unicode has to be a Unicode object (not checked).Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate to using
PyUnicode_GET_LENGTH()
.
-
Py_UNICODE *PyUnicode_AS_UNICODE(PyObject *unicode)¶
-
const char *PyUnicode_AS_DATA(PyObject *unicode)¶
Return a pointer to a
Py_UNICODE
representation of the object. The returned buffer is always terminated with an extra null code point. It may also contain embedded null code points, which would cause the string to be truncated when used in most C functions. TheAS_DATA
form casts the pointer to const char*. The unicode argument has to be a Unicode object (not checked).Changed in version 3.3: This function is now inefficient – because in many cases the
Py_UNICODE
representation does not exist and needs to be created – and can fail (returnNULL
with an exception set). Try to port the code to use the newPyUnicode_nBYTE_DATA()
macros or usePyUnicode_WRITE()
orPyUnicode_READ()
.Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate to using the
PyUnicode_nBYTE_DATA()
family of macros.
-
int PyUnicode_IsIdentifier(PyObject *unicode)¶
- Part of the Stable ABI.
Return
1
if the string is a valid identifier according to the language definition, section Identifiers and keywords. Return0
otherwise.Changed in version 3.9: The function does not call
Py_FatalError()
anymore if the string is not ready.
Unicode Character Properties¶
Unicode provides many different character properties. The most often needed ones are available through these macros which are mapped to C functions depending on the Python configuration.
-
int Py_UNICODE_ISSPACE(Py_UCS4 ch)¶
Return
1
or0
depending on whether ch is a whitespace character.
-
int Py_UNICODE_ISUPPER(Py_UCS4 ch)¶
Return
1
or0
depending on whether ch is an uppercase character.
-
int Py_UNICODE_ISLINEBREAK(Py_UCS4 ch)¶
Return
1
or0
depending on whether ch is a linebreak character.
-
int Py_UNICODE_ISALPHA(Py_UCS4 ch)¶
Return
1
or0
depending on whether ch is an alphabetic character.
-
int Py_UNICODE_ISALNUM(Py_UCS4 ch)¶
Return
1
or0
depending on whether ch is an alphanumeric character.
-
int Py_UNICODE_ISPRINTABLE(Py_UCS4 ch)¶
Return
1
or0
depending on whether ch is a printable character. Nonprintable characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those which should not be escaped whenrepr()
is invoked on a string. It has no bearing on the handling of strings written tosys.stdout
orsys.stderr
.)
These APIs can be used for fast direct character conversions:
-
Py_UCS4 Py_UNICODE_TOLOWER(Py_UCS4 ch)¶
Return the character ch converted to lower case.
Deprecated since version 3.3: This function uses simple case mappings.
-
Py_UCS4 Py_UNICODE_TOUPPER(Py_UCS4 ch)¶
Return the character ch converted to upper case.
Deprecated since version 3.3: This function uses simple case mappings.
-
Py_UCS4 Py_UNICODE_TOTITLE(Py_UCS4 ch)¶
Return the character ch converted to title case.
Deprecated since version 3.3: This function uses simple case mappings.
-
int Py_UNICODE_TODECIMAL(Py_UCS4 ch)¶
Return the character ch converted to a decimal positive integer. Return
-1
if this is not possible. This macro does not raise exceptions.
-
int Py_UNICODE_TODIGIT(Py_UCS4 ch)¶
Return the character ch converted to a single digit integer. Return
-1
if this is not possible. This macro does not raise exceptions.
-
double Py_UNICODE_TONUMERIC(Py_UCS4 ch)¶
Return the character ch converted to a double. Return
-1.0
if this is not possible. This macro does not raise exceptions.
These APIs can be used to work with surrogates:
-
Py_UNICODE_IS_SURROGATE(ch)¶
Check if ch is a surrogate (
0xD800 <= ch <= 0xDFFF
).
-
Py_UNICODE_IS_HIGH_SURROGATE(ch)¶
Check if ch is a high surrogate (
0xD800 <= ch <= 0xDBFF
).
-
Py_UNICODE_IS_LOW_SURROGATE(ch)¶
Check if ch is a low surrogate (
0xDC00 <= ch <= 0xDFFF
).
-
Py_UNICODE_JOIN_SURROGATES(high, low)¶
Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading and trailing surrogates in a surrogate pair.
Creating and accessing Unicode strings¶
To create Unicode objects and access their basic sequence properties, use these APIs:
-
PyObject *PyUnicode_New(Py_ssize_t size, Py_UCS4 maxchar)¶
- Return value: New reference.
Create a new Unicode object. maxchar should be the true maximum code point to be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence 127, 255, 65535, 1114111.
This is the recommended way to allocate a new Unicode object. Objects created using this function are not resizable.
New in version 3.3.
-
PyObject *PyUnicode_FromKindAndData(int kind, const void *buffer, Py_ssize_t size)¶
- Return value: New reference.
Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND
etc., as returned byPyUnicode_KIND()
). The buffer must point to an array of size units of 1, 2 or 4 bytes per character, as given by the kind.If necessary, the input buffer is copied and transformed into the canonical representation. For example, if the buffer is a UCS4 string (
PyUnicode_4BYTE_KIND
) and it consists only of codepoints in the UCS1 range, it will be transformed into UCS1 (PyUnicode_1BYTE_KIND
).New in version 3.3.
-
PyObject *PyUnicode_FromStringAndSize(const char *str, Py_ssize_t size)¶
- Return value: New reference. Part of the Stable ABI.
Create a Unicode object from the char buffer str. The bytes will be interpreted as being UTF-8 encoded. The buffer is copied into the new object. If the buffer is not
NULL
, the return value might be a shared object, i.e. modification of the data is not allowed.If str is
NULL
, this function behaves likePyUnicode_FromUnicode()
with the buffer set toNULL
. This usage is deprecated in favor ofPyUnicode_New()
, and will be removed in Python 3.12.
-
PyObject *PyUnicode_FromString(const char *str)¶
- Return value: New reference. Part of the Stable ABI.
Create a Unicode object from a UTF-8 encoded null-terminated char buffer str.
-
PyObject *PyUnicode_FromFormat(const char *format, ...)¶
- Return value: New reference. Part of the Stable ABI.
Take a C
printf()
-style format string and a variable number of arguments, calculate the size of the resulting Python Unicode string and return a string with the values formatted into it. The variable arguments must be C types and must correspond exactly to the format characters in the format ASCII-encoded string. The following format characters are allowed:Format Characters
Type
Comment
%%
n/a
The literal % character.
%c
int
A single character, represented as a C int.
%d
int
Equivalent to
printf("%d")
. 1%u
unsigned int
Equivalent to
printf("%u")
. 1%ld
long
Equivalent to
printf("%ld")
. 1%li
long
Equivalent to
printf("%li")
. 1%lu
unsigned long
Equivalent to
printf("%lu")
. 1%lld
long long
Equivalent to
printf("%lld")
. 1%lli
long long
Equivalent to
printf("%lli")
. 1%llu
unsigned long long
Equivalent to
printf("%llu")
. 1%zd
Equivalent to
printf("%zd")
. 1%zi
Equivalent to
printf("%zi")
. 1%zu
size_t
Equivalent to
printf("%zu")
. 1%i
int
Equivalent to
printf("%i")
. 1%x
int
Equivalent to
printf("%x")
. 1%s
const char*
A null-terminated C character array.
%p
const void*
The hex representation of a C pointer. Mostly equivalent to
printf("%p")
except that it is guaranteed to start with the literal0x
regardless of what the platform’sprintf
yields.%A
PyObject*
The result of calling
ascii()
.%U
PyObject*
A Unicode object.
%V
PyObject*, const char*
A Unicode object (which may be
NULL
) and a null-terminated C character array as a second parameter (which will be used, if the first parameter isNULL
).%S
PyObject*
The result of calling
PyObject_Str()
.%R
PyObject*
The result of calling
PyObject_Repr()
.An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and any extra arguments discarded.
Note
The width formatter unit is number of characters rather than bytes. The precision formatter unit is number of bytes for
"%s"
and"%V"
(if thePyObject*
argument isNULL
), and a number of characters for"%A"
,"%U"
,"%S"
,"%R"
and"%V"
(if thePyObject*
argument is notNULL
).- 1(1,2,3,4,5,6,7,8,9,10,11,12,13)
For integer specifiers (d, u, ld, li, lu, lld, lli, llu, zd, zi, zu, i, x): the 0-conversion flag has effect even when a precision is given.
Changed in version 3.2: Support for
"%lld"
and"%llu"
added.Changed in version 3.3: Support for
"%li"
,"%lli"
and"%zi"
added.Changed in version 3.4: Support width and precision formatter for
"%s"
,"%A"
,"%U"
,"%V"
,"%S"
,"%R"
added.
-
PyObject *PyUnicode_FromFormatV(const char *format, va_list vargs)¶
- Return value: New reference. Part of the Stable ABI.
Identical to
PyUnicode_FromFormat()
except that it takes exactly two arguments.
-
PyObject *PyUnicode_FromObject(PyObject *obj)¶
- Return value: New reference. Part of the Stable ABI.
Copy an instance of a Unicode subtype to a new true Unicode object if necessary. If obj is already a true Unicode object (not a subtype), return a new strong reference to the object.
Objects other than Unicode or its subtypes will cause a
TypeError
.
-
PyObject *PyUnicode_FromEncodedObject(PyObject *obj, const char *encoding, const char *errors)¶
- Return value: New reference. Part of the Stable ABI.
Decode an encoded object obj to a Unicode object.
bytes
,bytearray
and other bytes-like objects are decoded according to the given encoding and using the error handling defined by errors. Both can beNULL
to have the interface use the default values (see Built-in Codecs for details).All other objects, including Unicode objects, cause a
TypeError
to be set.The API returns
NULL
if there was an error. The caller is responsible for decref’ing the returned objects.
-
Py_ssize_t PyUnicode_GetLength(PyObject *unicode)¶
- Part of the Stable ABI since version 3.7.
Return the length of the Unicode object, in code points.
New in version 3.3.
-
Py_ssize_t PyUnicode_CopyCharacters(PyObject *to, Py_ssize_t to_start, PyObject *from, Py_ssize_t from_start, Py_ssize_t how_many)¶
Copy characters from one Unicode object into another. This function performs character conversion when necessary and falls back to
memcpy()
if possible. Returns-1
and sets an exception on error, otherwise returns the number of copied characters.New in version 3.3.
-
Py_ssize_t PyUnicode_Fill(PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)¶
Fill a string with a character: write fill_char into
unicode[start:start+length]
.Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return
-1
and raise an exception on error.New in version 3.3.
-
int PyUnicode_WriteChar(PyObject *unicode, Py_ssize_t index, Py_UCS4 character)¶
- Part of the Stable ABI since version 3.7.
Write a character to a string. The string must have been created through
PyUnicode_New()
. Since Unicode strings are supposed to be immutable, the string must not be shared, or have been hashed yet.This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object can be modified safely (i.e. that it its reference count is one).
New in version 3.3.
-
Py_UCS4 PyUnicode_ReadChar(PyObject *unicode, Py_ssize_t index)¶
- Part of the Stable ABI since version 3.7.
Read a character from a string. This function checks that unicode is a Unicode object and the index is not out of bounds, in contrast to
PyUnicode_READ_CHAR()
, which performs no error checking.New in version 3.3.
-
PyObject *PyUnicode_Substring(PyObject *unicode, Py_ssize_t start, Py_ssize_t end)¶
- Return value: New reference. Part of the Stable ABI since version 3.7.
Return a substring of unicode, from character index start (included) to character index end (excluded). Negative indices are not supported.
New in version 3.3.
-
Py_UCS4 *PyUnicode_AsUCS4(PyObject *unicode, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)¶
- Part of the Stable ABI since version 3.7.
Copy the string unicode into a UCS4 buffer, including a null character, if copy_null is set. Returns
NULL
and sets an exception on error (in particular, aSystemError
if buflen is smaller than the length of unicode). buffer is returned on success.New in version 3.3.
-
Py_UCS4 *PyUnicode_AsUCS4Copy(PyObject *unicode)¶
- Part of the Stable ABI since version 3.7.
Copy the string unicode into a new UCS4 buffer that is allocated using
PyMem_Malloc()
. If this fails,NULL
is returned with aMemoryError
set. The returned buffer always has an extra null code point appended.New in version 3.3.
Deprecated Py_UNICODE APIs¶
Deprecated since version 3.3, will be removed in version 3.12.
These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using them, as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and memory hits.
-
PyObject *PyUnicode_FromUnicode(const Py_UNICODE *u, Py_ssize_t size)¶
- Return value: New reference.
Create a Unicode object from the Py_UNICODE buffer u of the given size. u may be
NULL
which causes the contents to be undefined. It is the user’s responsibility to fill in the needed data. The buffer is copied into the new object.If the buffer is not
NULL
, the return value might be a shared object. Therefore, modification of the resulting Unicode object is only allowed when u isNULL
.If the buffer is
NULL
,PyUnicode_READY()
must be called once the string content has been filled before using any of the access macros such asPyUnicode_KIND()
.Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate to using
PyUnicode_FromKindAndData()
,PyUnicode_FromWideChar()
, orPyUnicode_New()
.
-
Py_UNICODE *PyUnicode_AsUnicode(PyObject *unicode)¶
Return a read-only pointer to the Unicode object’s internal
Py_UNICODE
buffer, orNULL
on error. This will create the Py_UNICODE* representation of the object if it is not yet available. The buffer is always terminated with an extra null code point. Note that the resultingPy_UNICODE
string may also contain embedded null code points, which would cause the string to be truncated when used in most C functions.Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate to using
PyUnicode_AsUCS4()
,PyUnicode_AsWideChar()
,PyUnicode_ReadChar()
or similar new APIs.
-
Py_UNICODE *PyUnicode_AsUnicodeAndSize(PyObject *unicode, Py_ssize_t *size)¶
Like
PyUnicode_AsUnicode()
, but also saves thePy_UNICODE()
array length (excluding the extra null terminator) in size. Note that the resulting Py_UNICODE* string may contain embedded null code points, which would cause the string to be truncated when used in most C functions.New in version 3.3.
Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate to using
PyUnicode_AsUCS4()
,PyUnicode_AsWideChar()
,PyUnicode_ReadChar()
or similar new APIs.
-
Py_ssize_t PyUnicode_GetSize(PyObject *unicode)¶
- Part of the Stable ABI.
Return the size of the deprecated
Py_UNICODE
representation, in code units (this includes surrogate pairs as 2 units).Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate to using
PyUnicode_GET_LENGTH()
.
Locale Encoding¶
The current locale encoding can be used to decode text from the operating system.
-
PyObject *PyUnicode_DecodeLocaleAndSize(const char *str, Py_ssize_t length, const char *errors)¶
- Return value: New reference. Part of the Stable ABI since version 3.7.
Decode a string from UTF-8 on Android and VxWorks, or from the current locale encoding on other platforms. The supported error handlers are
"strict"
and"surrogateescape"
(PEP 383). The decoder uses"strict"
error handler if errors isNULL
. str must end with a null character but cannot contain embedded null characters.Use
PyUnicode_DecodeFSDefaultAndSize()
to decode a string fromPy_FileSystemDefaultEncoding
(the locale encoding read at Python startup).This function ignores the Python UTF-8 Mode.
See also
The
Py_DecodeLocale()
function.New in version 3.3.
Changed in version 3.7: The function now also uses the current locale encoding for the
surrogateescape
error handler, except on Android. Previously,Py_DecodeLocale()
was used for thesurrogateescape
, and the current locale encoding was used forstrict
.
-
PyObject *PyUnicode_DecodeLocale(const char *str, const char *errors)¶
- Return value: New reference. Part of the Stable ABI since version 3.7.
Similar to
PyUnicode_DecodeLocaleAndSize()
, but compute the string length usingstrlen()
.New in version 3.3.
-
PyObject *PyUnicode_EncodeLocale(PyObject *unicode, const char *errors)¶
- Return value: New reference. Part of the Stable ABI since version 3.7.
Encode a Unicode object to UTF-8 on Android and VxWorks, or to the current locale encoding on other platforms. The supported error handlers are
"strict"
and"surrogateescape"
(PEP 383). The encoder uses"strict"
error handler if errors isNULL
. Return abytes
object. unicode cannot contain embedded null characters.Use
PyUnicode_EncodeFSDefault()
to encode a string toPy_FileSystemDefaultEncoding
(the locale encoding read at Python startup).This function ignores the Python UTF-8 Mode.
See also
The
Py_EncodeLocale()
function.New in version 3.3.
Changed in version 3.7: The function now also uses the current locale encoding for the
surrogateescape
error handler, except on Android. Previously,Py_EncodeLocale()
was used for thesurrogateescape
, and the current locale encoding was used forstrict
.
File System Encoding¶
To encode and decode file names and other environment strings,
Py_FileSystemDefaultEncoding
should be used as the encoding, and
Py_FileSystemDefaultEncodeErrors
should be used as the error handler
(PEP 383 and PEP 529). To encode file names to bytes
during
argument parsing, the "O&"
converter should be used, passing
PyUnicode_FSConverter()
as the conversion function:
-
int PyUnicode_FSConverter(PyObject *obj, void *result)¶
- Part of the Stable ABI.
ParseTuple converter: encode
str
objects – obtained directly or through theos.PathLike
interface – tobytes
usingPyUnicode_EncodeFSDefault()
;bytes
objects are output as-is. result must be a PyBytesObject* which must be released when it is no longer used.New in version 3.1.
Changed in version 3.6: Accepts a path-like object.
To decode file names to str
during argument parsing, the "O&"
converter should be used, passing PyUnicode_FSDecoder()
as the
conversion function:
-
int PyUnicode_FSDecoder(PyObject *obj, void *result)¶
- Part of the Stable ABI.
ParseTuple converter: decode
bytes
objects – obtained either directly or indirectly through theos.PathLike
interface – tostr
usingPyUnicode_DecodeFSDefaultAndSize()
;str
objects are output as-is. result must be a PyUnicodeObject* which must be released when it is no longer used.New in version 3.2.
Changed in version 3.6: Accepts a path-like object.
-
PyObject *PyUnicode_DecodeFSDefaultAndSize(const char *str, Py_ssize_t size)¶
- Return value: New reference. Part of the Stable ABI.
Decode a string from the filesystem encoding and error handler.
If
Py_FileSystemDefaultEncoding
is not set, fall back to the locale encoding.Py_FileSystemDefaultEncoding
is initialized at startup from the locale encoding and cannot be modified later. If you need to decode a string from the current locale encoding, usePyUnicode_DecodeLocaleAndSize()
.See also
The
Py_DecodeLocale()
function.Changed in version 3.6: Use
Py_FileSystemDefaultEncodeErrors
error handler.
-
PyObject *PyUnicode_DecodeFSDefault(const char *str)¶
- Return value: New reference. Part of the Stable ABI.
Decode a null-terminated string from the filesystem encoding and error handler.
If
Py_FileSystemDefaultEncoding
is not set, fall back to the locale encoding.Use
PyUnicode_DecodeFSDefaultAndSize()
if you know the string length.Changed in version 3.6: Use
Py_FileSystemDefaultEncodeErrors
error handler.
-
PyObject *PyUnicode_EncodeFSDefault(PyObject *unicode)¶
- Return value: New reference. Part of the Stable ABI.
Encode a Unicode object to
Py_FileSystemDefaultEncoding
with thePy_FileSystemDefaultEncodeErrors
error handler, and returnbytes
. Note that the resultingbytes
object may contain null bytes.If
Py_FileSystemDefaultEncoding
is not set, fall back to the locale encoding.Py_FileSystemDefaultEncoding
is initialized at startup from the locale encoding and cannot be modified later. If you need to encode a string to the current locale encoding, usePyUnicode_EncodeLocale()
.See also
The
Py_EncodeLocale()
function.New in version 3.2.
Changed in version 3.6: Use
Py_FileSystemDefaultEncodeErrors
error handler.
wchar_t Support¶
wchar_t
support for platforms which support it:
-
PyObject *PyUnicode_FromWideChar(const wchar_t *wstr, Py_ssize_t size)¶
- Return value: New reference. Part of the Stable ABI.
Create a Unicode object from the
wchar_t
buffer wstr of the given size. Passing-1
as the size indicates that the function must itself compute the length, usingwcslen()
. ReturnNULL
on failure.
-
Py_ssize_t PyUnicode_AsWideChar(PyObject *unicode, wchar_t *wstr, Py_ssize_t size)¶
- Part of the Stable ABI.
Copy the Unicode object contents into the
wchar_t
buffer wstr. At most sizewchar_t
characters are copied (excluding a possibly trailing null termination character). Return the number ofwchar_t
characters copied or-1
in case of an error. Note that the resulting wchar_t* string may or may not be null-terminated. It is the responsibility of the caller to make sure that the wchar_t* string is null-terminated in case this is required by the application. Also, note that the wchar_t* string might contain null characters, which would cause the string to be truncated when used with most C functions.
-
wchar_t *PyUnicode_AsWideCharString(PyObject *unicode, Py_ssize_t *size)¶
- Part of the Stable ABI since version 3.7.
Convert the Unicode object to a wide character string. The output string always ends with a null character. If size is not
NULL
, write the number of wide characters (excluding the trailing null termination character) into *size. Note that the resultingwchar_t
string might contain null characters, which would cause the string to be truncated when used with most C functions. If size isNULL
and the wchar_t* string contains null characters aValueError
is raised.Returns a buffer allocated by
PyMem_New
(usePyMem_Free()
to free it) on success. On error, returnsNULL
and *size is undefined. Raises aMemoryError
if memory allocation is failed.New in version 3.2.
Changed in version 3.7: Raises a
ValueError
if size isNULL
and the wchar_t* string contains null characters.
Built-in Codecs¶
Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the following functions.
Many of the following APIs take two arguments encoding and errors, and they
have the same semantics as the ones of the built-in str()
string object
constructor.
Setting encoding to NULL
causes the default encoding to be used
which is UTF-8. The file system calls should use
PyUnicode_FSConverter()
for encoding file names. This uses the
variable Py_FileSystemDefaultEncoding
internally. This
variable should be treated as read-only: on some systems, it will be a
pointer to a static string, on others, it will change at run-time
(such as when the application invokes setlocale).
Error handling is set by errors which may also be set to NULL
meaning to use
the default handling defined for the codec. Default error handling for all
built-in codecs is “strict” (ValueError
is raised).
The codecs all use a similar interface. Only deviations from the following generic ones are documented for simplicity.
Generic Codecs¶
These are the generic codec APIs:
-
PyObject *PyUnicode_Decode(const char *str, Py_ssize_t size, const char *encoding, const char *errors)¶
- Return value: New reference. Part of the Stable ABI.
Create a Unicode object by decoding size bytes of the encoded string str. encoding and errors have the same meaning as the parameters of the same name in the
str()
built-in function. The codec to be used is looked up using the Python codec registry. ReturnNULL
if an exception was raised by the codec.
-
PyObject *PyUnicode_AsEncodedString(PyObject *unicode, const char *encoding, const char *errors)¶
- Return value: New reference. Part of the Stable ABI.
Encode a Unicode object and return the result as Python bytes object. encoding and errors have the same meaning as the parameters of the same name in the Unicode
encode()
method. The codec to be used is looked up using the Python codec registry. ReturnNULL
if an exception was raised by the codec.
UTF-8 Codecs¶
These are the UTF-8 codec APIs:
-
PyObject *PyUnicode_DecodeUTF8(const char *str, Py_ssize_t size, const char *errors)¶
- Return value: New reference. Part of the Stable ABI.
Create a Unicode object by decoding size bytes of the UTF-8 encoded string str. Return
NULL
if an exception was raised by the codec.
-
PyObject *PyUnicode_DecodeUTF8Stateful(const char *str, Py_ssize_t size, const char *errors, Py_ssize_t *consumed)¶
- Return value: New reference. Part of the Stable ABI.
If consumed is
NULL
, behave likePyUnicode_DecodeUTF8()
. If consumed is notNULL
, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in consumed.
-
PyObject *PyUnicode_AsUTF8String(PyObject *unicode)¶
- Return value: New reference. Part of the Stable ABI.
Encode a Unicode object using UTF-8 and return the result as Python bytes object. Error handling is “strict”. Return
NULL
if an exception was raised by the codec.
-
const char *PyUnicode_AsUTF8AndSize(PyObject *unicode, Py_ssize_t *size)¶
- Part of the Stable ABI since version 3.10.
Return a pointer to the UTF-8 encoding of the Unicode object, and store the size of the encoded representation (in bytes) in size. The size argument can be
NULL
; in this case no size will be stored. The returned buffer always has an extra null byte appended (not included in size), regardless of whether there are any other null code points.In the case of an error,
NULL
is returned with an exception set and no size is stored.This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a pointer to the same buffer. The caller is not responsible for deallocating the buffer. The buffer is deallocated and pointers to it become invalid when the Unicode object is garbage collected.
New in version 3.3.
Changed in version 3.7: The return type is now
const char *
rather ofchar *
.Changed in version 3.10: This function is a part of the limited API.
-
const char *PyUnicode_AsUTF8(PyObject *unicode)¶
As
PyUnicode_AsUTF8AndSize()
, but does not store the size.New in version 3.3.
Changed in version 3.7: The return type is now
const char *
rather ofchar *
.
UTF-32 Codecs¶
These are the UTF-32 codec APIs:
-
PyObject *PyUnicode_DecodeUTF32(const char *str, Py_ssize_t size, const char *errors, int *byteorder)¶
- Return value: New reference. Part of the Stable ABI.
Decode size bytes from a UTF-32 encoded buffer string and return the corresponding Unicode object. errors (if non-
NULL
) defines the error handling. It defaults to “strict”.If byteorder is non-
NULL
, the decoder starts decoding using the given byte order:*byteorder == -1: little endian *byteorder == 0: native order *byteorder == 1: big endian
If
*byteorder
is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder switches to this byte order and the BOM is not copied into the resulting Unicode string. If*byteorder
is-1
or1
, any byte order mark is copied to the output.After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is
NULL
, the codec starts in native order mode.Return
NULL
if an exception was raised by the codec.
-
PyObject *PyUnicode_DecodeUTF32Stateful(const char *str, Py_ssize_t size, const char *errors, int *byteorder, Py_ssize_t *consumed)¶
- Return value: New reference. Part of the Stable ABI.
If consumed is
NULL
, behave likePyUnicode_DecodeUTF32()
. If consumed is notNULL
,PyUnicode_DecodeUTF32Stateful()
will not treat trailing incomplete UTF-32 byte sequences (such as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in consumed.
-
PyObject *PyUnicode_AsUTF32String(PyObject *unicode)¶
- Return value: New reference. Part of the Stable ABI.
Return a Python byte string using the UTF-32 encoding in native byte order. The string always starts with a BOM mark. Error handling is “strict”. Return
NULL
if an exception was raised by the codec.
UTF-16 Codecs¶
These are the UTF-16 codec APIs:
-
PyObject *PyUnicode_DecodeUTF16(const char *str, Py_ssize_t size, const char *errors, int *byteorder)¶
- Return value: New reference. Part of the Stable ABI.
Decode size bytes from a UTF-16 encoded buffer string and return the corresponding Unicode object. errors (if non-
NULL
) defines the error handling. It defaults to “strict”.If byteorder is non-
NULL
, the decoder starts decoding using the given byte order:*byteorder == -1: little endian *byteorder == 0: native order *byteorder == 1: big endian
If
*byteorder
is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder switches to this byte order and the BOM is not copied into the resulting Unicode string. If*byteorder
is-1
or1
, any byte order mark is copied to the output (where it will result in either a\ufeff
or a\ufffe
character).After completion,
*byteorder
is set to the current byte order at the end of input data.If byteorder is
NULL
, the codec starts in native order mode.Return
NULL
if an exception was raised by the codec.
-
PyObject *PyUnicode_DecodeUTF16Stateful(const char *str, Py_ssize_t size, const char *errors, int *byteorder, Py_ssize_t *consumed)¶
- Return value: New reference. Part of the Stable ABI.
If consumed is
NULL
, behave likePyUnicode_DecodeUTF16()
. If consumed is notNULL
,PyUnicode_DecodeUTF16Stateful()
will not treat trailing incomplete UTF-16 byte sequences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in consumed.
-
PyObject *PyUnicode_AsUTF16String(PyObject *unicode)¶
- Return value: New reference. Part of the Stable ABI.
Return a Python byte string using the UTF-16 encoding in native byte order. The string always starts with a BOM mark. Error handling is “strict”. Return
NULL
if an exception was raised by the codec.
UTF-7 Codecs¶
These are the UTF-7 codec APIs:
-
PyObject *PyUnicode_DecodeUTF7(const char *str, Py_ssize_t size, const char *errors)¶
- Return value: New reference. Part of the Stable ABI.
Create a Unicode object by decoding size bytes of the UTF-7 encoded string str. Return
NULL
if an exception was raised by the codec.
-
PyObject *PyUnicode_DecodeUTF7Stateful(const char *str, Py_ssize_t size, const char *errors, Py_ssize_t *consumed)¶
- Return value: New reference. Part of the Stable ABI.
If consumed is
NULL
, behave likePyUnicode_DecodeUTF7()
. If consumed is notNULL
, trailing incomplete UTF-7 base-64 sections will not be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in consumed.
Unicode-Escape Codecs¶
These are the “Unicode Escape” codec APIs:
-
PyObject *PyUnicode_DecodeUnicodeEscape(const char *str, Py_ssize_t size, const char *errors)¶
- Return value: New reference. Part of the Stable ABI.
Create a Unicode object by decoding size bytes of the Unicode-Escape encoded string str. Return
NULL
if an exception was raised by the codec.
-
PyObject *PyUnicode_AsUnicodeEscapeString(PyObject *unicode)¶
- Return value: New reference. Part of the Stable ABI.
Encode a Unicode object using Unicode-Escape and return the result as a bytes object. Error handling is “strict”. Return
NULL
if an exception was raised by the codec.
Raw-Unicode-Escape Codecs¶
These are the “Raw Unicode Escape” codec APIs:
-
PyObject *PyUnicode_DecodeRawUnicodeEscape(const char *str, Py_ssize_t size, const char *errors)¶
- Return value: New reference. Part of the Stable ABI.
Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape encoded string str. Return
NULL
if an exception was raised by the codec.
-
PyObject *PyUnicode_AsRawUnicodeEscapeString(PyObject *unicode)¶
- Return value: New reference. Part of the Stable ABI.
Encode a Unicode object using Raw-Unicode-Escape and return the result as a bytes object. Error handling is “strict”. Return
NULL
if an exception was raised by the codec.
Latin-1 Codecs¶
These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by the codecs during encoding.
-
PyObject *PyUnicode_DecodeLatin1(const char *str, Py_ssize_t size, const char *errors)¶
- Return value: New reference. Part of the Stable ABI.
Create a Unicode object by decoding size bytes of the Latin-1 encoded string str. Return
NULL
if an exception was raised by the codec.
-
PyObject *PyUnicode_AsLatin1String(PyObject *unicode)¶
- Return value: New reference. Part of the Stable ABI.
Encode a Unicode object using Latin-1 and return the result as Python bytes object. Error handling is “strict”. Return
NULL
if an exception was raised by the codec.
ASCII Codecs¶
These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.
-
PyObject *PyUnicode_DecodeASCII(const char *str, Py_ssize_t size, const char *errors)¶
- Return value: New reference. Part of the Stable ABI.
Create a Unicode object by decoding size bytes of the ASCII encoded string str. Return
NULL
if an exception was raised by the codec.
-
PyObject *PyUnicode_AsASCIIString(PyObject *unicode)¶
- Return value: New reference. Part of the Stable ABI.
Encode a Unicode object using ASCII and return the result as Python bytes object. Error handling is “strict”. Return
NULL
if an exception was raised by the codec.
Character Map Codecs¶
This codec is special in that it can be used to implement many different codecs
(and this is in fact what was done to obtain most of the standard codecs
included in the encodings
package). The codec uses mappings to encode and
decode characters. The mapping objects provided must support the
__getitem__()
mapping interface; dictionaries and sequences work well.
These are the mapping codec APIs:
-
PyObject *PyUnicode_DecodeCharmap(const char *str, Py_ssize_t length, PyObject *mapping, const char *errors)¶
- Return value: New reference. Part of the Stable ABI.
Create a Unicode object by decoding size bytes of the encoded string str using the given mapping object. Return
NULL
if an exception was raised by the codec.If mapping is
NULL
, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the range from 0 to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) orNone
. Unmapped data bytes – ones which cause aLookupError
, as well as ones which get mapped toNone
,0xFFFE
or'\ufffe'
, are treated as undefined mappings and cause an error.
-
PyObject *PyUnicode_AsCharmapString(PyObject *unicode, PyObject *mapping)¶
- Return value: New reference. Part of the Stable ABI.
Encode a Unicode object using the given mapping object and return the result as a bytes object. Error handling is “strict”. Return
NULL
if an exception was raised by the codec.The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255 or
None
. Unmapped character ordinals (ones which cause aLookupError
) as well as mapped toNone
are treated as “undefined mapping” and cause an error.
The following codec API is special in that maps Unicode to Unicode.
-
PyObject *PyUnicode_Translate(PyObject *unicode, PyObject *table, const char *errors)¶
- Return value: New reference. Part of the Stable ABI.
Translate a string by applying a character mapping table to it and return the resulting Unicode object. Return
NULL
if an exception was raised by the codec.The mapping table must map Unicode ordinal integers to Unicode ordinal integers or
None
(causing deletion of the character).Mapping tables need only provide the
__getitem__()
interface; dictionaries and sequences work well. Unmapped character ordinals (ones which cause aLookupError
) are left untouched and are copied as-is.errors has the usual meaning for codecs. It may be
NULL
which indicates to use the default error handling.
MBCS codecs for Windows¶
These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is defined by the user settings on the machine running the codec.
-
PyObject *PyUnicode_DecodeMBCS(const char *str, Py_ssize_t size, const char *errors)¶
- Return value: New reference. Part of the Stable ABI on Windows since version 3.7.
Create a Unicode object by decoding size bytes of the MBCS encoded string str. Return
NULL
if an exception was raised by the codec.
-
PyObject *PyUnicode_DecodeMBCSStateful(const char *str, Py_ssize_t size, const char *errors, Py_ssize_t *consumed)¶
- Return value: New reference. Part of the Stable ABI on Windows since version 3.7.
If consumed is
NULL
, behave likePyUnicode_DecodeMBCS()
. If consumed is notNULL
,PyUnicode_DecodeMBCSStateful()
will not decode trailing lead byte and the number of bytes that have been decoded will be stored in consumed.
-
PyObject *PyUnicode_AsMBCSString(PyObject *unicode)¶
- Return value: New reference. Part of the Stable ABI on Windows since version 3.7.
Encode a Unicode object using MBCS and return the result as Python bytes object. Error handling is “strict”. Return
NULL
if an exception was raised by the codec.
-
PyObject *PyUnicode_EncodeCodePage(int code_page, PyObject *unicode, const char *errors)¶
- Return value: New reference. Part of the Stable ABI on Windows since version 3.7.
Encode the Unicode object using the specified code page and return a Python bytes object. Return
NULL
if an exception was raised by the codec. UseCP_ACP
code page to get the MBCS encoder.New in version 3.3.
Methods & Slots¶
Methods and Slot Functions¶
The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the descriptions) and return Unicode objects or integers as appropriate.
They all return NULL
or -1
if an exception occurs.
-
PyObject *PyUnicode_Concat(PyObject *left, PyObject *right)¶
- Return value: New reference. Part of the Stable ABI.
Concat two strings giving a new Unicode string.
-
PyObject *PyUnicode_Split(PyObject *unicode, PyObject *sep, Py_ssize_t maxsplit)¶
- Return value: New reference. Part of the Stable ABI.
Split a string giving a list of Unicode strings. If sep is
NULL
, splitting will be done at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be done. If negative, no limit is set. Separators are not included in the resulting list.
-
PyObject *PyUnicode_Splitlines(PyObject *unicode, int keepends)¶
- Return value: New reference. Part of the Stable ABI.
Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is considered to be one line break. If keepends is
0
, the Line break characters are not included in the resulting strings.
-
PyObject *PyUnicode_Join(PyObject *separator, PyObject *seq)¶
- Return value: New reference. Part of the Stable ABI.
Join a sequence of strings using the given separator and return the resulting Unicode string.
-
Py_ssize_t PyUnicode_Tailmatch(PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)¶
- Part of the Stable ABI.
Return
1
if substr matchesunicode[start:end]
at the given tail end (direction ==-1
means to do a prefix match, direction ==1
a suffix match),0
otherwise. Return-1
if an error occurred.
-
Py_ssize_t PyUnicode_Find(PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)¶
- Part of the Stable ABI.
Return the first position of substr in
unicode[start:end]
using the given direction (direction ==1
means to do a forward search, direction ==-1
a backward search). The return value is the index of the first match; a value of-1
indicates that no match was found, and-2
indicates that an error occurred and an exception has been set.
-
Py_ssize_t PyUnicode_FindChar(PyObject *unicode, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int direction)¶
- Part of the Stable ABI since version 3.7.
Return the first position of the character ch in
unicode[start:end]
using the given direction (direction ==1
means to do a forward search, direction ==-1
a backward search). The return value is the index of the first match; a value of-1
indicates that no match was found, and-2
indicates that an error occurred and an exception has been set.New in version 3.3.
Changed in version 3.7: start and end are now adjusted to behave like
unicode[start:end]
.
-
Py_ssize_t PyUnicode_Count(PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end)¶
- Part of the Stable ABI.
Return the number of non-overlapping occurrences of substr in
unicode[start:end]
. Return-1
if an error occurred.
-
PyObject *PyUnicode_Replace(PyObject *unicode, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)¶
- Return value: New reference. Part of the Stable ABI.
Replace at most maxcount occurrences of substr in unicode with replstr and return the resulting Unicode object. maxcount ==
-1
means replace all occurrences.
-
int PyUnicode_Compare(PyObject *left, PyObject *right)¶
- Part of the Stable ABI.
Compare two strings and return
-1
,0
,1
for less than, equal, and greater than, respectively.This function returns
-1
upon failure, so one should callPyErr_Occurred()
to check for errors.
-
int PyUnicode_CompareWithASCIIString(PyObject *unicode, const char *string)¶
- Part of the Stable ABI.
Compare a Unicode object, unicode, with string and return
-1
,0
,1
for less than, equal, and greater than, respectively. It is best to pass only ASCII-encoded strings, but the function interprets the input string as ISO-8859-1 if it contains non-ASCII characters.This function does not raise exceptions.
-
PyObject *PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)¶
- Return value: New reference. Part of the Stable ABI.
Rich compare two Unicode strings and return one of the following:
NULL
in case an exception was raisedPy_NotImplemented
in case the type combination is unknown
Possible values for op are
Py_GT
,Py_GE
,Py_EQ
,Py_NE
,Py_LT
, andPy_LE
.
-
PyObject *PyUnicode_Format(PyObject *format, PyObject *args)¶
- Return value: New reference. Part of the Stable ABI.
Return a new string object from format and args; this is analogous to
format % args
.
-
int PyUnicode_Contains(PyObject *unicode, PyObject *substr)¶
- Part of the Stable ABI.
Check whether substr is contained in unicode and return true or false accordingly.
substr has to coerce to a one element Unicode string.
-1
is returned if there was an error.
-
void PyUnicode_InternInPlace(PyObject **p_unicode)¶
- Part of the Stable ABI.
Intern the argument *p_unicode in place. The argument must be the address of a pointer variable pointing to a Python Unicode string object. If there is an existing interned string that is the same as *p_unicode, it sets *p_unicode to it (releasing the reference to the old string object and creating a new strong reference to the interned string object), otherwise it leaves *p_unicode alone and interns it (creating a new strong reference). (Clarification: even though there is a lot of talk about references, think of this function as reference-neutral; you own the object after the call if and only if you owned it before the call.)
-
PyObject *PyUnicode_InternFromString(const char *str)¶
- Return value: New reference. Part of the Stable ABI.
A combination of
PyUnicode_FromString()
andPyUnicode_InternInPlace()
, returning either a new Unicode string object that has been interned, or a new (“owned”) reference to an earlier interned string object with the same value.